
Organizacija, letnik 39 Razprave številka 10, december 2006

635

1 Definition of the Problem
The parallel service of complex systems is currently an
increasingly important research area. This area is gaining
in significance as computer science progresses and a lot of
scientific periodicals and reviews are now occupied with
this field of studies (Katwijk and Zalewski, 1999). Namely
the most common problem in service systems recently is
the increasing demand for processing a large volume of
transactions in real time. These requests could be normally
complied with by simply decomposing the original system
and its base activity into more dependent subsystems, each
with its own activity. But by doing this, new problems can
turn up. One of them is the distribution or allocation of
the incoming transaction evenly to all the subsystems (the
problem of load balancing). The problem can be solved
using a variety of theoretical approaches, for instance by
intelligent agents (Wooldridge and Jennings, 1995), by
Markov chains (Rosenthal, 2000; Song et al., 2004), by
Petri nets (Murata, 1989) and by the simulation method
(Guariso et al., 1996). In this article, the simulation method,
carried out by digital computer, is being used (the computer
simulation method).
 For the necessity of the simulation and the modelling, a
lot of simulation languages (compilers as well as interpreters)
have now been developed (Sang et al., 1994). They are being
executed on various computers and on the different types of

Modelling Parallel Service Systems in GPSS
Marko Žibert1, Miroljub Kljajić2

1ZZZS, Miklošičeva 24, 1000 Ljubljana, Slovenia, marko.zibert@zzzs.si
2Univerza v Mariboru, Fakulteta za organizacijske vede, 4000 Kranj, Kidričeva 55a, Slovenia, miroljub.kljajic@fov.uni-mb.si

This article treats parallel service system modelling in the GPSS simulation language. The transactions entering such systems select
between numerous different servers and we can mostly detect two rules in the selecting of the appropriate server. The first rule always
gives the first few (regarding its position in the system) entities (either servers or queues) precedence over the others, while the second
rule always treats all the equal entities evenly and selects among them quite randomly. Since GPSS normally operates by the first rule, we
frequently come up against difficulties when modelling systems that serve by another rule. The present article offers a methodology how
to solve this problem within GPSS.

Key words: discrete simulation, modelling, GPSS, parallel service systems, queuing theory

Modeliranje sistemov paralelne strežbe v GPSS-u

Članek obravnava modeliranje paralelnih strežnih sistemov v simulacijskem jeziku GPSS. Transakcije, ki vstopajo v takšne sisteme, izbirajo
med večjim številom strežnih mest. Pri zasedanju teh mest pa lahko v grobem zasledimo dva različna pravila. Prvo pravilo daje prednost
zasedanju prvih (po svoji poziciji v sistemu) entitet (bodisi strežnikov, bodisi čakalnih vrst), medtem ko drugo pravilo obravnava te entitete
enakovredno in izbira med njimi povsem naključno. Ker GPSS v svojem delovanju privzema prvo pravilo, lahko pri modeliranju sistemov,
ki strežejo po drugem pravilu, pogosto naletimo na določene težave. Pričujoči prispevek ponuja metodologijo, kako znotraj tega jezika
reševati omenjeni problem.

Ključne besede: diskretna simulacija, modeliranje, GPSS, sistemi paralelne strežbe, teorija vrst

operation systems. One of the first of these languages, and at
the same time also the most common, is the GPSS language
(General Purpose Simulation System), which was developed
in the early sixties for analyzing the responses of the IBM
mainframe systems (Blake and Gordon, 1964). At that time
it was called General Purpose Systems Simulator (Gordon,
1962). The main GPSS emphasized characteristics (Crain,
1997; Crain, 1998; Crain and Henriksen, 1999; Henriksen
and Crain, 2000) that made it very popular among the end-
users, such as:
n It was developed for different computer environments

(IBM 370 mainframes, personal computers, etc)
n Different versions of GPSS are executable under

different operation systems (Multiple Virtual Storage
– GPSSSV, Disk Operating System – GPSS/PC)

n The base components of the simulation language
(blocks) represent the constituents of the system very
well, so we can quickly and easily model any service
system taken from reality.

n It creates precise default statistics and reports during
the execution of the simulation.

n It is able to perform additional statistics and reports
on request.

n Through the HELP block it can access an external
user-written program (in FORTRAN).

 One of the most important characteristics listed
above is certainly the structure of the simulation language.

636

Its main components, semantically meaningful model
building blocks, are trying to functionally imitate a
particular constituent part of the serving system. So the
block names, such as ADVANCE, ASSEMBLE, ENTER,
LEAVE, RELEASE, SEIZE, TEST, TRANSFER, QUEUE
etc., allow even the uninitiated user to follow the logical
flow of a model, at least roughly (Chisman, 1992). In
fact, these blocks are just more or less adequate computer
projections of the functioning constituents. Thus, without
much knowledge of programming and by simply arranging
these blocks as they can be seen in reality, we can quickly
and easily build precise computer model of the real world
system.
 In spite of the fact that GPSS is a very user friendly
simulation tool, users are not always successful in their
modelling of reality. Although in some cases the simulation
model is properly built according to the modelling
methodology rules (and is also submitted to the syntax rules
of GPSS) some considerable discrepancies between the
behaviour of the model and the real system can be noticed
during the phase of the model evaluation and validation.
 The discrepancies described are particularly visible
when the simulated system has more equal parallel servers
and each of them has the same service characteristics.
This means that the service times of each server have the
same mean, the same variance and the same statistical
distribution. In most cases, as we can also expect, the
workload in such systems is evenly distributed among all of
the servers. However, the GPSS simulation model that ought
to represent such a system, contrary to our expectation,
shows unequally loaded servers. In other words, the results
of the simulation always indicates that the utilization is the
highest at the first server and then it gradually decreases. If
the occupation rate per server in the model – the utilization
rate that is defined as the fraction of the time the server
is working (Adan and Resing, 2001) – increases then the
differences in the workloads among particular servers
lessen, but the declining trend of the server utilization
(from the first server to the last) still exists.
 Considering this declining trend, it can be concluded
that the discrepancy (the deviation from reality) is
especially notable when the modelled systems have more
parallel servers than they really need on behalf of system
reliability and availability. Under normal circumstances
most of these servers would simply be redundant, but
in the area of informatics we are frequently dealing with
automatic server systems that must be firmly reliable and
continuously available, sometimes even under conditions
of emergency and under minimum control by the operator.
These requirements can be easily complied with some
additional parallel servers that could normally be spared.
 In this way (by adding additional parallel servers to
the system) we are, of course, decreasing the occupation
rate per server and, as was said before, we are also
increasing the unsuitability of the GPSS model by contrast
with the real system. Such a model usually shows that only
first few servers are somewhat utilized while the others are
completely free and standing idle.
 The reasons for the problem described are in special
GPSS blocks – the TRANSFER and SELECT blocks
– designed for routing transactions to the target server.

Various attributes of some sequential permanent entities,
such as facility and queue, are compared in these blocks.
The compared attribute of the facility entity is its current
state of occupation (whether it is busy or not) and the
compared attribute of the queue entity is the current length
of the queue (the number of transactions waiting in the
queue). If these compared attributes are equal then the
current transaction always picks out the first positioned
feasible entity (in GPSS programme code). For example, if
the first n parallel servers in a model are occupied and if the
next servers from n+1 to n+k are free, in this case the GPSS
simulation always chooses the (n+1)-th server to execute
the current transaction.
 In reality the server systems more often than not
behave quite differently under these circumstances. When
the attributes of the compared entities are equal then one of
the suitable entity is chosen by transaction clearly at random
in most cases. We can experience this especially in the area
of informatics where the randomness is even coded into the
programmes, subroutines, macros, distribution modules
etc. (Cicsplex SM Concepts and Planning; Žibert, 2005). So
in the above case the transaction wouldn’t precisely pick out
the (n+1)-th server but, on the contrary, it would select any
among the free k servers (from n+1 to n+k).
 Although the server systems with the characteristics
described are not very numerous, they can still be found in
the real world. Mostly they are connected with the single
queue that leads to the very first service facility. All the other
service facilities are arranged in a row, one after another at
some proper physical distance to each other (this discipline
can be often carried out in banks where the customers join
a single queue and the first person in line physically engages
the nearest free bank-teller), so the transaction (the client,
customer, etc.), after leaving the single queue, always seizes
its nearest server.
 Regarding our brief outline of the activities in the
parallel server systems, we can conclude that the real issue
is the order in which transactions seize one entity among
all the equivalent entities (in case that the entity is a server
facility), or enter one entity among all the equivalent entities
(in case that the entity is a queue). Although there are also
some other possibilities from the real world – especially
where people (customers), with their characteristic
behaviour, represent the transactions in a system (Azar et
al., 1994; Mitzenmacher, 1997) – we would stress that in
both cases the transaction serving could be:
n in random order, or in disorder (which is more

frequent, even standard in some cases – and we could
name it as service in random order);

n in an order of precedence (which is not very common
in the real world but it is always used in the modelling
with the GPSS programming language – which we
could name the service in order of precedence).

 As a result of the approaches explained, we can
state that GPSS modelling of the parallel server system
with the service in order of precedence is very easy and
uncomplicated. Namely, both the system itself and the
GPSS model use the service in order of precedence, so
the simulation results are usually in accordance with what
happens in the real system.
 We always come up to against difficulties, on the

Organizacija, letnik 39 Razprave številka 10, december 2006

Organizacija, letnik 39 Razprave številka 10, december 2006

637

other hand, when we try to build a GPSS model of a parallel
server system with the service in random order. The reason
is obvious because the system and its model use different
types of service order. As we said earlier the modelling
problems are even bigger when the occupation rate per
server in the system is low. In this case the simulated
utilization of the parallel servers in the GPSS model would
be completely inadequate.
 That is why, in the following chapters, we are trying
to develop a new GPSS methodology of modelling and
simulating parallel server systems with the service in
random order.

2 The Two Main Types of Parallel Service
The existing GPSS methodology of modelling parallel
server systems depends on the general type of the parallel
service we want to simulate. We can distinguish two main
types of parallel service and each of them has its special
solution within the normal (classical) usage of the GPSS
programming language. That means that it has its own
sequence of various GPSS blocks that should illustrate the
functioning of the system.
 The term “sequence of blocks” is not something that
is fixed and defined once for all by the GPSS developers. We

should consider it just as one variation among the many
possibilities that GPSS programmer can normally use. The
stress here is not just on the “sequence of blocks” but also
on the normal or classical usage of the GPSS language.
Generally speaking we have two main “sequences of blocks”
in classical GPSS programming for depicting parallel server
systems. Although there are certainly many individual
variations in recording these blocks, they are almost always
based on either the SELECT MIN or the TRANSFER ALL
structure.
These two main types are:
n multiple servers, each with its own waiting queue

(Figure 1)
n multiple servers, all with one single waiting queue

(Figure 2)
 At first sight it seems that both systems are very
complex and thus hard to model in the GPSS language. It
seems that by attempting this we couldn’t avoid many pages
of long block sequences contributing to almost completely
unclear, complicated and messy programme code. But the
boot is on other foot. Lots of tough work and tiresome
coding can be saved by simply using indirect addressing
(Chisman, 1992). But on the other hand, by using indirect
addressing we also loose something. The visual flow of
transactions through the system becomes clouded and
confused.
 The following programme codes show us the
possibilities of how to use indirect addressing in classical
programming for such parallel systems. Figure 3 represents
the GPSS model of a multiple server system where each
server has its own waiting queue, while Figure 4 shows a
model of a similar system with a single waiting queue.

3 The Graphic Representation of the
Problem

If we tried to persuasively demonstrate the functioning of
the GPSS models presented in Figure 3 and Figure 4 we
would have to establish some requirements first, namely:
n the number of parallel servers in the system
n the service time distribution of each server
n the distribution of transaction time between arrivals

into the system.
 We can also use data from the real world for the
purpose of our research, especially from the computer
world. So for the time between the arrivals function and for
the service time function we can use the tables published in
(Žibert, 1999). For the sake of simplicity let us also assume
that all the servers are equivalent in our model (meaning
that the service time function is the same for all the parallel
servers in the whole system). In this way Figure 5 and Figure
6 show us complemented and developed programmes
(based originally on Figure 3 and Figure 4).

�������������������� ��������

���������

���������

���������

��������

��������

�������������������� �����

���������

���������

���������

Figure 1: The scheme of the multiple servers system, each
server with its own waiting queue

�������������������� ��������

���������

���������

���������

��������

��������

�������������������� �����

���������

���������

���������

Figure 2: The scheme of the multiple server system with a
single waiting queue

638

Organizacija, letnik 39 Razprave številka 10, december 2006

 REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers each with its own waiting queue.
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F n servers
QUEUE1 EQU 1,Q
QUEUE. EQU .,Q
QUEUEN EQU N,Q n waiting queues
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z n process functions
PROCES1 FUNCTION RNx,Cx Service time distribution 1
 0,../1,..
PROCES. FUNCTION RNx,Cx Service time distribution .
 0,../1,..
PROCESN FUNCTION RNx,Cx Service time distribution N
 0,../1,..
PRIHOD FUNCTION RNx,Cx Time between arrivals distribution
 0,../1,..
 GENERATE FN$PRIHOD
* The TRANSFER block determines which entity in the range
 from
* QUEUE1 to QUEUEN has the minimum content and then places
 the
* number of this entity into parameter 1.

 SELECT MIN 1,QUEUE1,QUEUEN,,Q
 QUEUE P1
 SEIZE P1
 DEPART P1
 ADVANCE FN*P1
 RELEASE P1
 TERMINATE 1
*
 START xxx The number of processed transactions
 END

Figure 3: Classical usage of GPSS blocks for modelling a system of n servers, each with its own waiting queue

Organizacija, letnik 39 Razprave številka 10, december 2006

639

 REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers with one single waiting queue.
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F
QUEUE1 EQU 1,Q
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z
PROCES1 FUNCTION RNx,Cx Service time distribution 1
 0,../1,..
PROCES. FUNCTION RNx,Cx Service time distribution .
 0,../1,..
PROCESN FUNCTION RNx,Cx Service time distribution N
 0,../1,..
PRIHOD FUNCTION RNx,Cx Time between arrivals distribution
 0,../1,..
*
 GENERATE FN$PRIHOD
 QUEUE QUEUE1
*The TRANSFER block will see if the engaging transaction can go to the first
*location (BCPU1); if not, it will try to go to the next (BCPU2);if not, then to
*(BCPU3), until it tries the last location (BCPUN). If it cannot send it anywhere,
*it starts all over again, until it can finally move transaction to one of these
*locations.
 TRANSFER ALL,BCPU1,BCPUN,3
BCPU1 SEIZE 1
 ASSIGN 1,1
 TRANSFER ,DALJE
BCPU2 SEIZE 2
 ASSIGN 1,2
 TRANSFER ,DALJE
BCPU. SEIZE .
 ASSIGN 1,.
 TRANSFER ,DALJE
BCPUN SEIZE N
 ASSIGN 1,N
DALJE DEPART QUEUE1
 ADVANCE FN*P1
 RELEASE P1
 TERMINATE 1
*
 START xxx The number of processed transactions
 END

Figure 4: Classical usage of GPSS blocks for modelling a system of n servers with one single waiting queue

640

Organizacija, letnik 39 Razprave številka 10, december 2006

 REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers each with its own waiting queue.
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F
QUEUE1 EQU 1,Q
QUEUE. EQU .,Q
QUEUEN EQU N,Q
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z
PROCES1 FUNCTION RN1,C16 Service time distribution 1
 (in seconds)
 0.0000,0.0/0.3867,0.1/0.5693,0.2/0.6829,0.3/0.7604,0.4/0.8117,0.5/
 0.8463,0.6/0.8702,0.7/0.8887,0.8/0.9036,0.9/0.9150,1.0/0.9319,1.2/
 0.9476,1.5/0.9648,2.0/0.9795,3.0/1.0000,5.0

PROCES. FUNCTION RN1,C16 Service time distribution .
 (in seconds)
* The same data as above in PROCES1

PROCESN FUNCTION RN1,C16 Service time distribution N
 (in seconds)
* The same data as above in PROCES1

FPRIHOD FUNCTION AC1,C62 Time between arrivals
distribution (10 hours)

* The same data as above in PROCES1

VPRIHOD FVARIABLE FN$FPRIHOD*(ABS(LOG(1-(RN2/1000))))
 GENERATE V$VPRIHOD,,ST The simulation begins
 at time = ST
 SELECT MIN 1,QUEUE1,QUEUEN,,Q
 QUEUE P1
 SEIZE P1
 DEPART P1
 ADVANCE FN*P1
 RELEASE P1
 TERMINATE
*
 GENERATE DT The simulation lasts DT
 seconds
 TERMINATE 1
*
 START 1
 END

Figure 5: The classical model of a system with n servers and n waiting queues that processes statistical data from (Žibert, 1999)

Organizacija, letnik 39 Razprave številka 10, december 2006

641

 REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers with one single waiting queue.
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F
QUEUE1 EQU 1,Q
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z
PROCES1 FUNCTION RN1,C16 Service time distribution 1
 (in seconds)
 0.0000,0.0/0.3867,0.1/0.5693,0.2/0.6829,0.3/0.7604,0.4/0.8117,0.5/
 0.8463,0.6/0.8702,0.7/0.8887,0.8/0.9036,0.9/0.9150,1.0/0.9319,1.2/
 0.9476,1.5/0.9648,2.0/0.9795,3.0/1.0000,5.0
PROCES. FUNCTION RN1,C16 Service time distribution .
 (in seconds)
* The same data as above in PROCES1
PROCESN FUNCTION RN1,C16 Service time distribution N
 (in seconds)
* The same data as above in PROCES1
FPRIHOD FUNCTION AC1,C62 Time between arrivals distribution (10 hours)
* Data for this function are defined in FPRIHOD in Figure 3
VPRIHOD FVARIABLE FN$FPRIHOD*(ABS(LOG(1-(RN2/1000))))
 GENERATE V$VPRIHOD,,ST The simulation begins at time = ST
 QUEUE QUEUE1
 TRANSFER ALL,BCPU1,BCPUN,3
BCPU1 SEIZE 1
 ASSIGN 1,1
 TRANSFER ,DALJE
BCPU2 SEIZE 2
 ASSIGN 1,2
 TRANSFER ,DALJE
BCPU. SEIZE .
 ASSIGN 1,.
 TRANSFER ,DALJE
BCPUN SEIZE N
 ASSIGN 1,N
DALJE DEPART QUEUE1
 ADVANCE FN*P1
 RELEASE P1
 TERMINATE
*
 GENERATE DT The simulation lasts DT seconds
 TERMINATE 1
*
 START 1
 END

Figure 6: The classical model of a system with n servers and a single waiting queue that processes statistical data from (Žibert,

1999)

642

Organizacija, letnik 39 Razprave številka 10, december 2006

Table 1: Average server utilization (column 3) and average
queue content (column 5) depending on the number
of servers in the model (column 1)

Table 2: The number of transactions (column 3) and their
percentages (column 4) passed through the individual
servers (column 2) in the model with N (column 1)
parallel servers

Number
of

servers

Average server
utilization

Average queue
content

3
SERVER1 0.924 QUEUE1 2.712
SERVER2 0.832 QUEUE2 2.388
SERVER3 0.697 QUEUE3 2.143

4

SERVER1 0.874 QUEUE1 0.932
SERVER2 0.740 QUEUE2 0.738
SERVER3 0.529 QUEUE3 0.506
SERVER4 0.310 QUEUE4 0.307

5

SERVER1 0.865 QUEUE1 0.705
SERVER2 0.722 QUEUE2 0.527
SERVER3 0.497 QUEUE3 0.325
SERVER4 0.259 QUEUE4 0.158
SERVER5 0.110 QUEUE5 0.065

6

SERVER1 0.865 QUEUE1 0.657
SERVER2 0.713 QUEUE2 0.495
SERVER3 0.495 QUEUE3 0.308
SERVER4 0.254 QUEUE4 0.144
SERVER5 0.097 QUEUE5 0.044
SERVER6 0.030 QUEUE6 0.012

Number
of

servers
Server Number of

transactions
Percentage

[%]

3

SERVER1 8.587 0.378
SERVER2 7.729 0.341
SERVER3 6.366 0.281

SUM 22.682 1.000

4

SERVER1 8.189 0.361
SERVER2 6.658 0.294
SERVER3 4.887 0.215
SERVER4 2.949 0.130

SUM 22.683 1.000

5

SERVER1 8.120 0.358
SERVER2 6.372 0.281
SERVER3 4.625 0.204
SERVER4 2.501 0.110
SERVER5 1.065 0.047

SUM 22.683 1.000

6

SERVER1 8.032 0.355
SERVER2 6.430 0.283
SERVER3 4.516 0.199
SERVER4 2.436 0.107
SERVER5 999 0.044
SERVER6 270 0.012

SUM 22.683 1.000

Figure 7: The distribution of the service in the classical GPSS
model with six parallel servers

0,355
0,283

0,199
0,107

0,044 0,012
0,000

0,100

0,200

0,300

0,400
0,500

0,600

0,700

0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitcas nart d ev res e ht f o noitr oP
]

% [l edo
m eht

0,167 0,167 0,167 0,167 0,167 0,167

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700
0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitca sna rt dev res eht fo noi tro P
]

%[ledo
m eht

Figure 8: The expected distribution of the service in the
classical GPSS model with 6 servers

0,355
0,283

0,199
0,107

0,044 0,012
0,000

0,100

0,200

0,300

0,400
0,500

0,600

0,700

0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitcas nart d ev res e ht f o noitr oP
]

% [l edo
m eht

0,167 0,167 0,167 0,167 0,167 0,167

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700
0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitca sna rt dev res eht fo noi tro P
]

%[ledo
m eht

Having enhanced our models with real data, we are now able
to carry out the series of simulations. In each simulation
we can apply some modifications, such as the number of
concurrent servers (N), the starting time (defined by letter Z
in our programme), the duration of the simulation (defined
by letter Y in our programme) etc.
 First we can try using the model from Figure 5. For
testing purposes we can accept the following parameters:
n the starting time is zero (ST = 0)
n the duration time is one hour (DT = 3600)
n the number of servers is increasing from the minimum
to the maximum reasonable number (meaning that there
are at least certain number of servers with the attention of
avoiding queues that are too long in the model and that all
N servers in our model have some traffic -min. <= N =<
max.).
 The results are represented in Table 1.
 As we can see from the table above, the utilization
of the servers in the first few positions in the programme
code (SERVER1 and SERVER2) is quite high – considerably
higher in comparison with the servers positioned at the
end of the code (SERVER4, SERVER5 and SERVER6).
Furthermore, we can’t fail to observe that the utilization of
these same servers (SERVER1 and SERVER2) is not changed
much by adding additional servers in the model. This can
also be seen by looking at the number of transactions (and
their percentages) passed through the individual servers
(Table 2).

Organizacija, letnik 39 Razprave številka 10, december 2006

643

 The same can be seen more obviously in a graphic
way, especially for the model with six parallel servers
(Figure 7). Here we can clearly observe the declining trend
of the server utilization. Thus, the first server in the model
executes almost 36 percent of all the completed transactions
and the sixth server executes only one and if we expanded
our model by adding some new servers then they would be
completely idle.
 Of course, considering the service in random order,
which was our presumption, we would expect that the above
graph would be quite different and similar to Figure 8.
 But what would we get if the traffic in the model (the
number of entering transactions) diminished rapidly? Let’s
now change our GPSS programme from Figure 6 (the model
with n parallel servers and with a single waiting queue) as
follows:
n the starting time ST = 33000 (though the density of

the transaction arrivals is much lower)
n the duration time is again one hour, DT = 3600
n the number of server is increased from 2 to 6 (2 <= N

=< 6).
The results are presented in Table 3 and in Figure 9 for the
model with six servers.
 Straight away we can see that the model shows quite
unrealistic situation during conditions of low traffic density
(and by that also a low occupation rate per server). Barely
more than one server is utilized in the model (i. e. the first
one). In our case it is (only by chance) fully loaded while all
the other servers are practically unattached. This example
clearly demonstrates the discrepancy of the model and its
dependence on the occupation rate per server explained
earlier. Hence it follows that each and every possible
solution should be proved under the same conditions – i.e.
models with a low occupation rate per server.

4 The Solution of the Problem
In the previous chapters we established and proved that
classical (ordinary) usage of GPSS blocks in modelling
doesn’t take into consideration the principle of service in
random order. So whenever we model a system in GPSS that
operates in this way we always come up against difficulties.
However, in spite of everything, this principle can be
achieved. Taking into account that there are two main types
of parallel service (described in Figure 1 and Figure 2) we
will also offer two different solutions for each type.
 For the first type (the systems containing n servers each
with its own queue) this difficult task could be tackled in
the following way. At first the GPSS programme determines
the length of the shortest queue in the system (SELECT
MIN). Then it randomly (variable VAR1) chooses one of
the feasible queues (ASSIGN) and compares its length with
the length of the shortest one (TEST E). If both lengths are
equal then the transaction is normally sent to the randomly
chosen queue (QUEUE). Otherwise the programme picks
out another waiting queue (the execution of the programme
returns to label “PONOVNO”). Figure 10 shows the
principle part of the GPSS programme explained above.
 Our sample programme as a whole, upgraded using
the method described, would look like that shown in Figure
11.

Table 3: The number of transactions (column 3) and their
percentages (column 4) that passed through the
individual servers (column 2) in the model with N
parallel servers (column 1) during conditions of low
traffic density

Number
of servers Server Number of

transactions
Percentage

[%]

2
SERVER1 449 0.947
SERVER 025 0.053

SUM 474 1.000

3

SERVER1 449 0.947
SERVER2 025 0.053
SERVER3 000 0.000

SUM 474 1.000

4

SERVER1 449 0.947
SERVER2 025 0.053
SERVER3 000 0.000
SERVER4 000 0.000

SUM 474 1.000

5

SERVER1 449 0.947
SERVER2 025 0.053
SERVER3 000 0.000
SERVER4 000 0.000
SERVER5 000 0.000

SUM 474 1.000

6

SERVER1 449 0.947
SERVER2 025 0.053
SERVER3 000 0.000
SERVER4 000 0.000
SERVER5 000 0.000
SERVER6 000 0.000

SUM 474 1.000

Figure 9: The distribution of the service in the classical GPSS
model (with six parallel servers) on condition of low
traffic density

0,053
0,000 0,000 0,000 0,000

0,947

0,000

0,100

0,200
0,300

0,400

0,500
0,600

0,700

0,800

0,900
1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitcasn art de vr es eht fo n oitroP
]

% [led o
m eh t

644

Organizacija, letnik 39 Razprave številka 10, december 2006

VAR1 VARIABLE ((RN3*N/1000)+1)
 GENERATE
 SELECT MIN 1,QUEUE1,QUEUEN,,Q
PONOVNO ASSIGN 2,V$VAR1
 TEST E Q*P1,Q*P2,PONOVNO
 QUEUE P2

Figure 10: The section of the GPSS programme that solves the problem in a model with n servers and n queues

 REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers each with its own waiting queue.
* The upgraded variant
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F
QUEUE1 EQU 1,Q
QUEUE. EQU .,Q
QUEUEN EQU N,Q
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z
PROCES1 FUNCTION RN1,C16 Service time distribution 1 (in seconds)
 0.0000,0.0/0.3867,0.1/0.5693,0.2/0.6829,0.3/0.7604,0.4/0.8117,0.5/
 0.8463,0.6/0.8702,0.7/0.8887,0.8/0.9036,0.9/0.9150,1.0/0.9319,1.2/
 0.9476,1.5/0.9648,2.0/0.9795,3.0/1.0000,5.0
PROCES. FUNCTION RN1,C16 Service time distribution . (in seconds)
* The same data as above in PROCES1
PROCESN FUNCTION RN1,C16 Service time distribution N (in seconds)
* The same data as above in PROCES1
FPRIHOD FUNCTION AC1,C62 Time between arrivals distribution (10 hours)
* Data for this function are defined in FPRIHOD in Figure 3
VPRIHOD FVARIABLE FN$FPRIHOD*(ABS(LOG(1-(RN2/1000))))
 INITIAL X$SERVNUM,N Number of servers = N
VAR1 VARIABLE ((RN3*X$SERVNUM/1000)+1) A randomly chosen queue
 GENERATE V$VPRIHOD,,ST The simulation begins at time = ST
 SELECT MIN 1,QUEUE1,QUEUEN,,Q
PONOVNO ASSIGN 2,V$VAR1
 TEST E Q*P1,Q*P2,PONOVNO
 QUEUE P2
 SEIZE P2
 DEPART P2
 ADVANCE FN*P2
 RELEASE P2
 TERMINATE
*
 GENERATE DT The simulation lasts DT seconds
 TERMINATE 1
*
 START 1
 END

Figure 11: Our upgraded model of a system with n servers and n waiting queues that processes the same statistical data as the
 programme in Figure 5

Organizacija, letnik 39 Razprave številka 10, december 2006

645

 When the upgraded GPSS programme is executed
under the same conditions as before (the starting time ST
= 33000, the duration time DT = 3600 and the number
of servers ranging between 2 and 6) we get the following
simulation results (Table 4) and the following graph for a
model with six servers (Figure 12).
 Right away we can recognize that the behaviour of the
model is quite different to that in all the earlier cases. As we
can see, each server now seems to complete approximately
the same percentage of the incoming transactions so the
workload in our upgraded model quite realistically seems to
be evenly distributed among all of the servers in the system.
That hypothesis was even statistically confirmed using the
chi-squared test in (Žibert, 2005).
 For the parallel service model using a single waiting
queue (earlier defined as the second type) it is much harder to
find a solution. The classic GPSS system uses a long sequence
of blocks for this purpose. Thus in our sample we controlled

Table 4: The number of transactions (column 3) and their
percentages (column 4) passed through the individual
servers (column 2) in the upgraded model with N
(column 1) parallel servers

Number
of servers Server Number of

transactions
Percentage

[%]

2
SERVER1 225 0.475
SERVER 249 0.525

SUM 474 1.000

3

SERVER1 152 0.321
SERVER2 154 0.325
SERVER3 168 0.354

SUM 474 1.000

4

SERVER1 114 0.241
SERVER2 111 0.234
SERVER3 121 0.255
SERVER4 128 0.270

SUM 474 1.000

5

SERVER1 84 0.177
SERVER2 96 0.203
SERVER3 95 0.200
SERVER4 93 0.196
SERVER5 106 0.224

SUM 474 1.000

6

SERVER1 71 0.150
SERVER2 81 0.171
SERVER3 73 0.154
SERVER4 81 0.171
SERVER5 78 0.164
SERVER6 90 0.190

SUM 474 1.000

Figure 12: The distribution of the service in the upgraded
GPSS model with a dotted trend line

y = 0,001x + 0,167

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitcasn art de vr es eht fo n oitroP
]

% [led o
m eh t

INITIAL X$CPUNUM,N Number of servers = N
VAR1 VARIABLE ((RN3*X$CPUNUM/1000)+1)
 GENERATE ...
 QUEUE QUEUE1
 ASSIGN 1,X$CPUNUM-1
 ASSIGN 2,V$VAR1
PONOVNO TEST L P(X$CPUNUM-P1+1),X$CPUNUM,ZACETEK
 ASSIGN (X$CPUNUM-P1+2),P(X$CPUNUM-P1+1)+1
 TRANSFER ,ZANKA
ZACETEK ASSIGN (X$CPUNUM-P1+2),1
 TRANSFER ,ZANKA
ZANKA LOOP 1,PONOVNO

Figure 13: The complex section of the GPSS programme that solves the problem in a model with n servers and a single queue

the flow of a transaction within the blocks declared in the
transfer block (TRANSFER ALL, BCPU1, BCPUN, 3). That
means that we controlled it all the way from the TRANSFER
ALL block to the block labelled BCPUN plus three additional
subsequent blocks. It seems that all the blocks in between
form an indivisible entity where randomness of any kind can
not be taken into account.

 However, the problem here can be also grappled with.
By applying indirect addressing in the SEIZE blocks we
could always use one of the transaction parameters (P1,
P2, P3, etc). That means that the transaction occupies the
facility that is coded in that parameter. Thus, if we changed
the contents of all those parameters belonging to the
transaction at the time of its birth (generation), we would

646

Organizacija, letnik 39 Razprave številka 10, december 2006

REALLOCATE COM,32720
 SIMULATE
*
* Parallel server system – n servers with a single waiting queue.
* The upgraded variant
*
SERVER1 EQU 1,F
SERVER. EQU .,F
SERVERN EQU N,F
QUEUE1 EQU 1,Q
PROCES1 EQU 1,Z
PROCES. EQU .,Z
PROCESN EQU N,Z
PROCES1 FUNCTION RN1,C16 Service time distribution 1 (in seconds)
 0.0000,0.0/0.3867,0.1/0.5693,0.2/0.6829,0.3/0.7604,0.4/0.8117,0.5/
 0.8463,0.6/0.8702,0.7/0.8887,0.8/0.9036,0.9/0.9150,1.0/0.9319,1.2/
 0.9476,1.5/0.9648,2.0/0.9795,3.0/1.0000,5.0
PROCES. FUNCTION RN1,C16 Service time distribution . (in seconds)
* The same data as above in PROCES1
PROCESN FUNCTION RN1,C16 Service time distribution N (in seconds)
* The same data as above in PROCES1
FPRIHOD FUNCTION AC1,C62 Time between arrivals distribution (10 hours)
* Data for this function are defined in FPRIHOD in Figure 3
VPRIHOD FVARIABLE FN$FPRIHOD*(ABS(LOG(1-(RN2/1000))))
 INITIAL X$CPUNUM,N Number of servers = N
VAR1 VARIABLE ((RN3*X$CPUNUM/1000)+1) A random number from 1 to N
 GENERATE V$VPRIHOD,,ST The simulation begins at time = ST
 QUEUE QUEUE1
* The start of filling our parameter table
 ASSIGN 1,X$CPUNUM-1
 ASSIGN 2,V$VAR1
PONOVNO TEST L P(X$CPUNUM-P1+1),X$CPUNUM,ZACETEK
 ASSIGN (X$CPUNUM-P1+2),P(X$CPUNUM-P1+1)+1
 TRANSFER ,ZANKA
ZACETEK ASSIGN (X$CPUNUM-P1+2),1
 TRANSFER ,ZANKA
ZANKA LOOP 1,PONOVNO
* The end of filling our parameter table
 TRANSFER ALL,BCPU1,BCPUN,5
BCPU1 SEIZE P2
 DEPART QUEUE1
 ADVANCE FN*P2
 RELEASE P2
 TRANSFER ,DALJE
BCPU. SEIZE P.
 DEPART QUEUE1
 ADVANCE FN*P.
 RELEASE P.
 TRANSFER ,DALJE
BCPUN SEIZE P(N+1)
 DEPART QUEUE1
 ADVANCE FN*P(N+1)
 RELEASE P(N+1)
DALJE TERMINATE
*
 GENERATE DT The simulation lasts DT seconds
 TERMINATE 1
*
 START 1
 END

Figure 14: Our upgraded model of a system with n servers and a single waiting queue that processes the same statistical data as
the programme from Figure 6

Organizacija, letnik 39 Razprave številka 10, december 2006

647

also change all the facilities at hand in the SEIZE blocks.
All we must do is to create a table of parameters for each
generated transaction and fill it randomly with the numbers
that represent the appointed facility. Figure 13 shows us
how to do it.
 This time, our complete sample programme, upgraded
using the method described, would look like the that in
Figure 14.
 The results of the above GPSS simulation model
(under the same condition as earlier, with the starting
time ST = 33000, the duration time DT = 3600 and the
number of servers ranging between 2 and 6) are once again
presented as a table (Table 5) and as a graph for a model
with six servers (Figure 15).
 As before, we can perceive that the servers in the model
are treated approximately much the same. So the workload
in this upgraded programme could also be considered as
evenly distributed among all of the servers (Žibert, 2005).

Table 5: The number of transactions (column 3) and their
percentages (column 4) passed through the individual
servers (column 2) in the upgraded model with N
(column 1) parallel servers

Number
of servers Server Number of

transactions
Percentage

[%]

2
SERVER1 226 0.477
SERVER 248 0.523

SUM 474 1.000

3

SERVER1 155 0.327
SERVER2 155 0.327
SERVER3 164 0.346

SUM 474 1.000

4

SERVER1 117 0.247
SERVER2 111 0.234
SERVER3 122 0.257
SERVER4 124 0.262

SUM 474 1.000

5

SERVER1 87 0.183
SERVER2 96 0.203
SERVER3 96 0.203
SERVER4 93 0.196
SERVER5 102 0.215

SUM 474 1.000

6

SERVER1 73 0.154
SERVER2 82 0.173
SERVER3 73 0.154
SERVER4 81 0.171
SERVER5 78 0.165
SERVER6 87 0.183

SUM 474 1.000

Figure 15: The distribution of the services in the upgraded
GPSS model with a dotted trend line

y = 0,0007x + 0,167

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

1 2 3 4 5 6

The position of the server in the model

 ni snoitcas nart d ev res e ht f o noitr oP
]

% [l edo
m eht

*
* The definitions of macro IZBIRAQ for systems with n parallel
* servers and n waiting queues
*
* Macro parameters:
* #A – the number of parallel servers – N
* #B – random number (1 – 9)
*
* The exit is parameter 2.
*
IZBIRAQ STARTMACRO #A,#B
VAR1 VARIABLE ((#B*(#A+1-P1)/1000)+P1)
 SELECT MIN 1,QUEUE1,#A,,Q
PONOVNO ASSIGN 2,V$VAR1
 TEST E Q*P1,Q*P2,PONOVNO
 ENDMACRO
*
* The end of macro IZBIRAQ

Figure 16: The IZBIRAQ macro for models with n parallel servers and n waiting queues

648

5 Practical Forms of our Solution
Perhaps it would be helpful for many of us if we also
introduced our solution in a rather different form – using
so-called macros. This would make the solution more
common, even user friendly and (we hope) more applicable.
Macros are not just used to be easily and repeatedly called
from every possible point inside the programme. They are

also applied to shorten large source codes and to make them
much easier to understand.
 In this way, we present the GPSS macros for the
models in Figure 16 and Figure 17.
 In next figures (Figure 18 and Figure 19), there are
two simple samples of how the above two macros can be
used, so the readers can learn by examples.

Organizacija, letnik 39 Razprave številka 10, december 2006

*
* The definition of macro IZBIRAF for systems with n parallel
* servers and a single waiting queue
*
* Macro parameters:
* #A – the number of parallel servers – N
* #B – random number (1 – 9)
*
* The exit is a table of parameters from P2 to PN.
*
IZBIRAF STARTMACRO #A,#B
VAR1 VARIABLE ((#B*#A/1000)+1)
 ASSIGN 1,#A-1
 ASSIGN 2,V$VAR1
PONOVNO TEST L P(#A-P1+1),#A,ZACETEK
 ASSIGN (#A-P1+2),P(#A-P1+1)+1
 TRANSFER ,ZANKA
ZACETEK ASSIGN (#A-P1+2),1
 TRANSFER ,ZANKA
ZANKA LOOP 1,PONOVNO
 ENDMACRO
*
* The end of macro IZBIRAF

Figure 17: The IZBIRAF macro for models with n parallel servers and a single waiting queue

Organizacija, letnik 39 Razprave številka 10, december 2006

649

 SIMULATE
*
* System with 5 servers, each with its own waiting queue.
* The programme calls macro IZBIRAQ.
*
CPU1 EQU 1,F
CPU2 EQU 2,F
CPU3 EQU 3,F
CPU4 EQU 4,F
CPU5 EQU 5,F
QUEUE1 EQU 1,Q
QUEUE2 EQU 2,Q
QUEUE3 EQU 3,Q
QUEUE4 EQU 4,Q
QUEUE5 EQU 5,Q
PROCES1 EQU 1,Z
PROCES2 EQU 2,Z
PROCES3 EQU 3,Z
PROCES4 EQU 4,Z
PROCES5 EQU 5,Z
PROCES1 FUNCTION RN1,C2
 0,1/1,1
PROCES2 FUNCTION RN2,C2
 0,1/1,1
PROCES3 FUNCTION RN3,C2
 0,1/1,1
PROCES4 FUNCTION RN4,C2
 0,1/1,1
PROCES5 FUNCTION RN5,C2
 0,1/1,1
 INITIAL X$CPUNUM,5
*
* The definition of macro IZBIRAQ
*
IZBIRAQ STARTMACRO #A,#B
VAR1 VARIABLE ((#B*(#A+1-P1)/1000)+P1)
 SELECT MIN 1,QUEUE1,#A,,Q
PONOVNO ASSIGN 2,V$VAR1
 TEST E Q*P1,Q*P2,PONOVNO
 ENDMACRO
*
* The end of the macro
*
*
* The main programme
*
 GENERATE 0.6,0.5,,,,27
IZBIRAQ MACRO X$CPUNUM,RN6
 QUEUE P2
 SEIZE P2
 DEPART P2
 ADVANCE FN*P2
 RELEASE P2
 TERMINATE 1
*
 START 10000
 END

Figure 18: A simple programme showing how to use the IZBIRAQ macro

650

Organizacija, letnik 39 Razprave številka 10, december 2006

 SIMULATE
*
* System with 3 servers and one waiting queue.
* The programme calls macro IZBIRAF.
*
SERVER1 EQU 1,F
SERVER2 EQU 2,F
SERVER3 EQU 3,F
QUEUE1 EQU 1,Q
PROCES1 EQU 1,Z
PROCES2 EQU 2,Z
PROCES3 EQU 3,Z
PROCES1 FUNCTION RN1,C2
 0,1/1,1
PROCES2 FUNCTION RN2,C2
 0,1/1,1
PROCES3 FUNCTION RN3,C2
 0,1/1,1
FPRIHOD FUNCTION AC1,C7
 00000,1.2/00600,1.4/01200,0.9/01800,0.8/02400,0.75/03000,0.9/03600,1.2
VPRIHOD FVARIABLE FN$FPRIHOD*(ABS(LOG(1-(RN2/1000))))
 INITIAL X$CPUNUM,3
*
* The start of macro IZBIRAF
*
IZBIRAF STARTMACRO #A,#B
VAR1 VARIABLE ((#B*#A/1000)+1)
 ASSIGN 1,#A-1
 ASSIGN 2,V$VAR1
PONOVNO TEST L P(#A-P1+1),#A,ZACETEK
 ASSIGN (#A-P1+2),P(#A-P1+1)+1
 TRANSFER ,ZANKA
ZACETEK ASSIGN (#A-P1+2),1
 TRANSFER ,ZANKA
ZANKA LOOP 1,PONOVNO
 ENDMACRO
*
* The end of the macro
*
* The main programme
*
 GENERATE V$VPRIHOD
 QUEUE QUEUE1
IZBIRAF MACRO X$CPUNUM,RN4
 TRANSFER ALL,BCPU1,BCPU3,5
BCPU1 SEIZE P2
 DEPART QUEUE1
 ADVANCE FN*P2
 RELEASE P2
 TRANSFER ,DALJE
BCPU2 SEIZE P3
 DEPART QUEUE1
 ADVANCE FN*P3
 RELEASE P3
 TRANSFER ,DALJE
BCPU3 SEIZE P4
 DEPART QUEUE1
 ADVANCE FN*P4
 RELEASE P4
DALJE TERMINATE
*
 GENERATE 3600
 TERMINATE 1
*
 START 1
 END

Figure 19: A simple programme showing how to use the IZBIRAF macro

Organizacija, letnik 39 Razprave številka 10, december 2006

651

6 Conclusions
As we said in chapter one when describing the problem, the
GPSS modelling of parallel server systems with the service
in random order always causes some problems. The final
effect of these troubles (and our problem) is more or less
presented as a discrepancy between the model and the real
system. In some extreme cases the discrepancy could be so
large that we are talking about an inadequate model.
 In this article we tried to show a methodology of how
to surmount the obstacles represented in this simulation
language and how to correctly model some prevailing
types of parallel service systems. The suggested solution is
mainly composed of some additional control statements
(as declarations at the beginning of the GPSS programme)
and an extra section of block sequence that randomly
chooses one of the suitable entities in the model. To make
the solution more applicable among users we also went
a step further. In this respect, we made it easily available
as a macro called from the main programme with some
additional parameters.
 As presented in the article (especially in the graphs),
the solution successfully simulates the behaviour of parallel
service systems with the service in random order. Without
using it, the model would describe the same system but
with different type of service order. In this case it would
represent a system with the service in order of precedence,
which is immanent to GPSS.

Literature
Adan, I. & Resing, J. (2001). Queueing Theory, Department of

Mathematics and Computing Science, Eindhoven University
of Technology.

Azar, Y., Broder, A., Karlin, A. & Upfal, E. (1999). Balanced
Allocations, SIAM Journal on Computing, 29(1): 180-200.

Blake, K. & Gordon G. (1964). System simulation with digital
computers, IBM Systems Journal, 3(1):14 – 20.

Chisman, A. J. (1992). Introduction to Simulation Modeling Using
GPSS/PC, Prentice-Hall International, Englewood Cliffs.

Cicsplex SM Concepts and Planning (1999), International Business
Machines Corporation, New York.

Crain, C. R. (1997). Simulation using GPSS/H, Proceedings of the
1997 Winter Simulation Conference, Uredili: Andradbttir,
S., Healy, K. J., Withers, D. H. & Nelson, B. L. Atlanta 7-10
dec. 1997. Piscataway: Institute of Electronics and Electrical
Engineers.

Crain, C. R. (1998). Simulation using GPSS/H, Proceedings of the
1998 Winter Simulation Conference, Edited by Medeiros, D.
J., Watson, E. F., Carson, J. S., Manivannan, M. S. Washington
13-16 dec. 1998. Piscataway: Institute of Electronics and
Electrical Engineers.

Crain, C. R. & Henriksen, J. O. (1999). Simulation using GPSS/H,

Proceedings of the 1999 Winter Simulation Conference, Edited
by Farrington, P. A., Nembhard, H. B., Sturrock, D. T. & Evans,
G. W. Phoenix 5-8 dec. 1999. Phoenix: Institute of Electronics
and Electrical Engineers.

Gordon G. (1962). A general purpose systems simulator, IBM
Systems Journal, 3(1):18-32.

Guariso, G., Hitz, M. & Werthner, H. (1996). An integrated
simulation and optimization modelling environment for
decision support, Decision Support Systems, 16(2):103 – 117.

Henriksen, J. O. & Crain, C. R. (2000). GPSS/H: A 23 – year
retrospective view, Proceedings of the 2000 Winter Simulation
Conference, Edited by Joines, J. A., Barton, R. R., Kang, K. &
Fishwick, P. A. Orlando 10-13 dec. 2000, Piscataway: Institute
of Electronics and Electrical Engineers.

Katwijk, J. & Zalewski, J. (1999). Parallel and Distributed Real-
Time Systems: An Introduction, Parallel and Distributed
Computing Practices, 2(1):1-6.

Mitzenmacher, M. (1999). On the Analysis of Randomized Load
Balancing Schemes, Theory of Computing Systems, 32(3): 361-
386.

Murata, T. (1989). Petri nets: Properties, analysis and applications,
Proceedings of the IEEE, 77(4): 540– 581.

Rosenthal, J. S. (2000). Parallel computing and Monte Carlo
algorithms, Far East Journal of Theoretical Statistics, 4(2):
207-236.

Sang, J., Chung, K. & Rego, V. (1994). A Simulation Testbed based
on Lightweight Processes, Software: Practice and Experience,
24(5): 485-505.

Song, B., Ernemann, C. & Yahyapour, R. (2004). Parallel Computer
Workload Modeling with Markov Chains, Proceedings of Job
Scheduling Strategies for Parallel Processing: 10th International
Workshop, edited by Feitelson, U. D., Rudolph, L. &
Schwiegelshohn, U. New York 13 jun. 2004. Berlin: Springer
Verlag.

Wooldridge, M. & Jennings, N. (1995). Intelligent Agents: Theory
and Practice, Knowledge Engineering Review, 10(2): 115-147.

Žibert, M. (1999). Simulacija delovanja CICS-a na osrednjem
računalniku na Zavodu za zdravstveno zavarovanje Slovenije
(in Slovenian), Diploma Assignment, University of Maribor,
Faculty of Organizational Science.

Žibert, M. (2005). Simulacija delovanja paralelnih enojnih
strežnikov v GPSS-u, Master Thesis, University of Maribor,
Faculty of Organizational Science.

Marko Žibert received his Master degree in information
systems management at the University of Maribor, Faculty of
Organizational Science, in 2005. His major research interest
includes discrete simulation for the optimization of various
information systems. He is employed as a system programmer
in the System Department of the Health Insurance Institute of
Slovenia (ZZZS).

Miroljub Kljajić is Professor at the Faculty of Organizational
Sciences, University of Maribor. His brief biography is published
on page 634 of this issue.

