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A central element in or­ganization of financal means by a per­son, a company or societal group consists in the constitu­tion, 
analysis and op­timization of portfolios. This requests the time-depending modeling of processes. Likewise many processes 
in natu­re, tech­nology and economy, financial processes suffer from stochastic fluctuations. Therefore, we consider stochastic 
differential equations (Kloeden, Platen and Schurz, 1994) since in reality, especially, in the financial sector, many processes 
are affected with noise. As a drawback, these equations are hard to represent by a compu­ter and hard to resolve. In our paper, 
we ex­press them in simplified manner of ap­proximation by both a discretization and additive models based on splines. Our 
parameter estimation refers to the linearly involved spline coefficients as prepared in (Taylan and Weber, 2007) and the par
tially nonlinearly involved probabilistic parameters. We construct a penalized residual sum of square for this model and face 
occu­ring nonlinearities by Gauss-Newton’s and Levenberg-Mar­quardt’s method on deter­mining the iteration step. We also 
investigate when the related minimization program can be written as a Tikhonov regu­larization problem (sometimes called 
ridge regression), and we treat it using continu­ous op­timization tech­niques. In par­ticu­lar, we prepare access to the elegant 
framework of conic quadratic programming. These convex op­timation problems are very well-structu­red, herewith resembling 
linear programs and, hence, per­mitting the use of interior point methods (Nesterov and Nemirovskii, 1993).

Key­ words: Stochastic Differential Equations, Regression, Statistical Lear­ning, Parameter Estimation, Splines, Gauss-New
ton Method, Levenberg-Mar­quardt’s method, Smoothing, Stability, Penalty Methods, Tikhonov Regu­larization, Continu­ous 
Op­timization, Conic Quadratic Programming.

Or­ga­ni­za­tion in Fi­nance Prepa­red  
by Stocha­stic Dif­ferential Equa­tions  
with Addi­ti­ve and Nonli­near Models  

and Conti­nuous Opti­mi­za­tion

1	 Introduction

This paper is devoted to a modeling of financial proces
ses which may serve as a basis of analysis and structural 
investigation. An important ex­pression of this structure, 
the composition of its parts - its or­ga­ni­za­tion of financial 
assets - is called portfolio consisting of securities such as 
bonds, stocks, certificates, etc.. The organization of this 
portfolio requests pricing, hedging, optimization and opti
mal control. Those processes are on single assets and price 
processes, and on larger portfolios as well. The present 
study focusses on the first part of this modeling called 
regression, especially, parameter estimation.

Real-world data from the financial sector and science 
are often characterized by their great number and by a 
high variation. At the same time, the data need to become 
well understood and they have to serve as the basis of 
future prediction. Both the real situation and the practi
cal requests are hard to balance (Hastie, Tibshirani and 
Friedman, 2001; Taylan and Weber, 2007; Taylan, Weber 
and Beck, 2007).

In fact, related mathematical modeling faces with non
differentiability and a high sensitivity of the model with 
respect to slightest perturbations of the data. Our paper 
analyzes this challenge by discussing and elaborating the 
corresponding parameter estimation problem by means 
of Tikhonov regularization, conic quadratic programming 
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and nonlinear regression methods. Herewith, we offer an 
alternative view and approach to stochastic differential 
equations (SDE­s), and we invite to future research and 
practical applications. As a preparation, we firstly intro
duce into our methodology of statistical learning entitled 
ad­di­ti­ve models, which we will then ex­ploit systematically. 
Indeed, we will apply them to SDE­s, using modern met
hods of regularization and optimization. We shall address 
both the linear and the nonlinear case of parameter esti
mation. By this we develop and improve the results made 
in (Taylan and Weber, 2007).

2	 Classi­cal Addi­ti­ve Models 

Regression models are very important in many applied 

areas, the ad­di­ti­ve model (Buja, ���������������������������  Hastie and Tibshirani��,� 

1989) is one of them. These models estimate an additive 

approximation of the multivariate regression function. 

For N observations on a response (or dependent) variable 

Y, denoted by 1 2( , ,..., )T
ny y yy =  measured at N design 

vector ( )1 1, ,...,
T

i i i i mx x x=x , the additive model is defi

ned by 

(2.1)                       ( )0
1

m

j j
j

Y f Xb e
=

= + +å , 

where the errors e are independent of the factors, Xj,

E(e) = 0 and Var(e) = s2. Here, the functions jf  are 

arbitrary unknown, univariate functions, they are mostly 

considered to be splines and we denote the estimates by 

jf̂ . The standard convention consists in assuming at jX  

that ( )( ) 0j jE f X = , since otherwise there will be a free 

constant in each of the functions (Hastie, Tibshirani and 

Friedman, 2001); all such constants are summarized by the 

intercept (bias) b0. 

1.1	 Esti­ma­tion Equa­tions for Addi­ti­ve Model

Additive models have a strong motivation as a useful data 

analytic tool. Each function is estimated by an algorithm 

proposed by (Friedman and Stuetzle, 1981) and called 

back­fitting (or Gauss-Sei­del) algorithm. As our estima

tor for b0, the mean of the response variable Y is used: 

0
ˆ ( )E Yb = . This procedure depends on the partial resi

dual against jX :

(2.2)                    ( )0j k k
k j

r Y f Xb
¹

= - -å ,

and it consists of estimating each smooth function by hol

ding all the other ones fixed . Then, ( ) ( )j j j jE r X f X=  

which minimizes ( )( )2

0 1
b

=
- -åm

j jj
E Y f X  (Friedman and 

Stuetzle, 1981; Hastie and Tibshirani, 1987).

3	 Stocha­stic Dif­ferential Equa­tions

3.1	 Defi­ni­tion (Stocha­stic Dif­ferential  
Equa­tions)

Many phenomena in nature, technology and economy are 
modelled by means of a deterministic differential equa
tion with initial value 0 :x Î �

                          
0

(: ) ( , ),
(0) .

x dx dt a x t
x x

= =ì
í =î



But this type of modeling omits stochastic fluctua
tions and is not appropriate for, e.g., stock prices. To consi
der stochastic movements, stocha­stic differential equa­tion 
(SDE) are used since they arise in modeling many pheno
mena, such as random dynamics in the physical, biological 
and social sciences, in engineering and economy. Solutions 
of these equations are often diffusion processes and, hen
ce, they are connected to the subject of partial differential 
equations. We try to find a solution for these equations by 
an ad­di­ti­ve approximation (cf. Section 2), which is very 
famous in the statistical area, using spline functions.

Typically, a stocha­stic differential equa­tion, equipped 
with an initial value, is given by 

(3.1)        
0

( ) ( , ) ( , ) ( [0, )),
(0) ,

tX t a X t b X t t
X x

ì = + Î ¥ï
í

=ïî

 d

where a is the deterministic part, bdt is the stochastic part, 
and dt 

denotes a generalized stochastic process (Kloeden, 
Platen and Schurz, 1994; Øksendal, 2003). 

An example of a generalized stochastic processes is 
white noise. For a generalized stochastic processes, deri
vatives of any order can be defined. Suppose that tW  is 
a generalized version of a Wiener process which is used 
to model the motion of stock prices, which instantly res
ponds to the numerous upcoming informations. A one-
dimensional Wiener process (or a Brownian motion) is a 
time continuous process with the following properties.

1.	 0 0,W = with probability one.

2.	 (0, ) for all (0 ),tW N t t t TÎ £ £� that is, for each t 

the random variable tW  is normally distributed with 

mean [ ] 0tE W =  and variance [ ] 2Var t tW E W té ù= =ë û .

3.	 All increments :t t t tW W W+DD = -  on nonoverlapping 

time intervals are independent. That is, the displace

ments 
2 1t tW W- and 

4 3t tW W- are independent for all 

1 2 3 40 t t t t£ < £ < .
 
We note that a multi-dimensional Wiener processes 

can be similarly defined. Usually a Wiener process is diffe
rentiable almost nowhere. To obtain our approximate and, 
then, smoothened model, we treat tW  as if it was differen
tiable (a first approach which is widespread in literature). 
Then, white noise dt 

is defined as t t tW dW dtd = =  and 
a Wiener process can be obtained by smoothing the white 

b0 e

b0

b0 dt

d

b0
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noise. If we replace tdtd  by tdW  in equation (3.1), then, 
this stocha­stic differential equa­tion can be rewritten as 

(3.2)                    ( , ) ( , )t t t tdX a X t dt b X t dW= + ,
 

where ( , )ta X t  and ( , )tb X t  are drift and diffusion term, 
respectively, and tX  is a solution which we try to find 
based on the ex­perimental data. Equation (3.2) is called 

ˆIto  SDE. Here we want to simulate values of tX , since 
we do not know its distribution. For this reason, we simu
late a discreti­zed version of the SDE.

3.2	 Discreti­za­tion of SDE

There are a number of discretization schemes available; 

we choose the Mil­stein scheme. Then, we represent an 

approximation ˆ
jtX , in short: ˆ ( )ÎjX j IN , of the process

tX  by 

(3.3) 1 1 1

2
1 1

ˆ ˆ ˆ ˆ( , )( ) ( , )( )

1 ˆ( )( , ) ( ) ( ) ,
2

j j j j j j j j j j

j j j j j j

X X a X t t t b X t W W

b b X t W W t t

+ + +

+ +

= + - + -

¢ é ù+ - - -ë û

where the prime “' ” denotes the derivative with respect 

to t. Now, particularly referring to the finitely many sam

ple (data) points ( , ) ( 1, 2,..., ),=j jX t j N  we get

(3.4) 
2

( , ) ( , )

( )
1 2( )( , ) 1 .

D
= +

æ öD
¢+ -ç �ç �è ø

 j
j j j j j

j

j
j j

j

W
X a X t b X t

h

W
b b X t

h

Here, the value jX  represents a difference quotient 

based on the j th ex­perimental data jX  and on step 

lengths 1: +D = = -j j j jt h t t  between neighbouring sam

pling times:

           
1

1

, if 1, 2,..., 1,
:

, if .

+

-

ì -
= -ï

ï= í
-ï =ïî



j j

j
j

N N

N

X X
j N

h
X

X X j N
h

The relations (3.4) cannot be ex­pected to hold in an 
exact sense, since they include real data, but we satisfy 
them best in the approxi­ma­te sense of least squares of 
errors. For the sake of convenience, we still write “=” 
instead of the approximation symbol “ » ”, and we shall 
study the least-squares estimation in Subsection 3.3.

    
Since (0, )tW N t� , the increments jWD  are inde

pendent on non-overlapping intervals and moreover, 
Var( )D = Dj jW t , hence, the increments having normal 
distribution can be simulated with the help of standard 
normal distributed random numbers jZ . Herewith, we 
obtain a discrete model for a Wiener process:

(3.5)              , (0,1)D = D �j j j jW Z t Z N .

If we use this value in our discretized equation, we 
obtain

(3.6) ( )21( , ) ( , ) ( )( , ) 1
2

¢= + + - j
j j j j j j j j

j

Z
X a X t b X t b b X t Z

h
.

For simplicity, we write equation (3.6) as
               

(3.7)           ( ) ,j j j j j j jX G H c H H d¢= + +

where 

( )2: , : 1 2 1 , : ( , ) and : ( , )= = - = =j j j j j j j j j j jc Z h d Z G a X t H b X t . 

To find the unknown values of jG and jH , we consi
der the following optimization problem:

(3.8)               ( )2

21
min ( ( ) )

=

¢- + +å 
N

j j j j j j jy j
X G H c H H d .

Here, y is a vector which comprises all the parame
ters in the Milstein model. We point out that also vector-
valued processes could be studied, then referring to sums 
of terms in the Euclidean norm 2

2
� . Data from the stock 

market, but also from other sources of information or com
muncation, have a high variation. 

Then, we must use a parameter estimation methods 
which will diminish this high variation and will give a 
smoother approximation to the data. Splines are more 
flexible and they allow us to avoid large oscillation obser
ved for high-degree polynomial approximation. We recall 
that these functions can be described as linear combina
tions of basis splines and approximate the data ( , )j jX t  
smoothly. Therefore, we approximate each function 
underlying the values ( , )j j jG a X t= , ( , )=j j jH b X t  
and ( , )¢=j j jF b b X t  in an ad­di­ti­ve way established on 
basis splines. This treatment is very useful for the stabi
lity of the model in the presence of the many and highly 
varying data. Let us use basis splines for each function 
characterized by a separation of variables (coordinates); 
e.g., in equation (3.7):

(3.9)

         
2 2

0 , 0 ,
1 1 1

2 2

0 , 0 ,
1 1 1

2 2

0 , 0 ,
1 1 1

( , ) ( ) ( ),

( , ) ( ) ( ),

( , ) ( ) ( ),

a a a

b b b

j j j

= = =

= = =

= = =

= = + = +

= = + = +

¢= = + = +

å åå

å åå

å åå

g
p

h
r

f
s

d
l l

j j j p j p p p j p
p p l

d
m m

j j j j j r j r r r j r
r r m

d
n n

j j j j j s j s s s j s
s s n

G a X t f U B U

H c b X t c g U C U

F d b b X t d h U D U

where ( ) ( ),1 ,2, : , .j j j j jU U U X t= = Let us give an exam
ple on how one can gain bases of splines. If we denote the 
kth order basis spline by ,h kB , a polynomial of degree k 
−1 with knots, say xh , then a great benefit of using the 
base splines is provided by the following recursive algo
rithm (De Boor, 2001): 

dt

b0b0 b

aa0 a0

j0 j0 j

h

h
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(3.10)

           
1

,1

, , 1 1, 1
1 1

1, if
( )

0, otherwise,

( ) ( ) ( ).k
k k k

k k

x x x
B x

x x x x
B x B x B x

x x x x

h h
h

h h
h h h

h h h h

+

+
- + -

+ - + +

£ <ì
= í

î

- -
= +

- -

3.4	 The Pena­li­zed Resi­dual Sum of Squa­res 
Problem for SDE

We construct the pena­li­zed resi­dual sum of squa­res for 
SDE in the following form:
(3.11) ( ){ }

[ ] [ ]

22 2

1 1

2 2
2 2

1 1

( , , ) : ( )

( ) ( ) .

N

j j j j j j p p p p
j p

r r r r s s s s
r s

PRSS f g h X G H c F d f U dU

g U dU h U dU

q l

m j

= =

= =

¢¢é ù, = - + + + ë û

¢¢ ¢¢+ +

å å ò

å åò ò



Here, for convenience, we use the integral symbol “ ò” as a 

dummy in the sense of 
[ , ]

,
a bc k

ò  where [ , ] ( , , )a b p r sk k k =  

are appropriately large intervals where the integration 

takes place, respectively. Furthermore, , , 0p r sl m j ³  are 

smoothing (or penalty) pa­ra­meters, they represent a tra

deoff between first and second term. Large values of 

, ,p r sl m j  yield smoother curves, smaller values result in 

more fluctuation. If we use an additive form based on the 

basis splines for each function, then PRSS will become

( ){ }2

1

2
2 2 2

0 , 0 , 0 ,
1 1 1 1 1 1 1

(3.12)     

( ) ( ) ( ) .
h fg
p sr

N

j j j j j j
j

d ddN
l l m m n n

j p p j p r r j r s s j s
j p l r m s n

X G H c F d

X B U C U D Ua a b b j j

=

= = = = = = =

- + + =

ì üæ öï ï- ç + + + + + �í ýç �ï ïè øî þ

å

å åå åå åå





For simplicity, we introduce the following matrix nota
tion:

(3.13)

      2

0 ,
1 1

2 2

0 , 0 ,
1 1 1 1

( )

( ) ( )

g
p

fh
sr

d
l l

j j j j j p p j p
p l

dd
m m n n
r r j r s s j s

r m s n

j

G H c F d B U

C U D U

A

a a

b b j j

q,

= =

= = = =

+ + = + +

+ + + +

=

åå

åå åå

where 

( ) ( ) ( ) ( )
( ) ( )
( )

1 2 1 2 1 2

1 2 1 2
, , , , , ,

1 2
, , ,

, 1 , 1 , 1

( ), ( ),..., ( ) ( 1, 2), ( ), ( ),..., ( ) ( 1, 2),

( ), ( ),..., ( ) ( 1, 2) and 

g h
p r

f
s

j j j j j j j j j j j j j

d dp r
j p j p p j p p j p j r j r r j r r j r

ds
j s j s s j s s j s

A B C D B B B C C C D D D

B B U B U B U p C C U C U C U r

D D U B U B U s

= = = =

= = = =

= =

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2
0 1 2 0 1 2

1 2 1 2
0 1 2

, , , , , , , ,..., ( 1, 2), , , ,

, ,..., ( 1, 2), , , , , ,..., ( 1, 2).

g
p

fh
sr

TT T TdT T T T T T T
p p p p

TT dd T T
r r r r s s s s

p

r s

q a b j a a a a a a a a b b b b

b b b b j j j j j j j j

= = = = =

= = = = =

Now, we can obtain the residual sum of squares as the 

squared length of the difference between X  and Aq , whe

re A  is matrix which contains the row vectors jA , and

X  is our vector of difference quotients standing for the 

change rates of the ex­perimental data: 

(3.14)                     { } 22

21

N

j j
j

X A X Aq q
=

- = -å   ,

where ( ) ( )1 2 1 2, ,..., , , ,..., .
TTT T T

N NA A A A X X X X= =      
 
Indeed, we get a discretized form of each integration 
term in the following way:

(3.15)             
12 2

1,
1

2
1

1 1

( ) ( ) ( )

( ) .
g
p

b N

p p p p jp j p jp
ja

dN
l l
p p jP j

j l

f U dU f U U U

B U ua

-

+
=

-

= =

é ù é ù¢¢ ¢¢@ -ë û ë û

é ù
¢¢= ê ú

ê úë û

åò

å å
Using Riemann sums, we can discretize and repre

sent each integration by the squared length of a vector, 
namely,

(3.16) 

[ ]

12 2 2

2
1

1 2 22

2
1

12 2 2

2
1

( ) ( 1, 2),

( ) ( 1, 2),

( ) ( 1, 2).

b N
p B

p p p j j p P p
ja

b N
r C

r r r j j r r r
ja

b N
s s D

s s s j j s j s s
ja

f U dU B u A p

g U dU C v A r

h U dU D w D A s

a a

b b

j j

-

=

-

=

-

=

é ù é ù¢¢ ¢¢@ = =ë û ë û

é ù¢¢¢¢ @ = =ë û

é ù é ù¢¢ ¢¢@ = =ë û ë û

åò

åò

åò

Here, 

( )1 1 2 2 1 1 1, ,: , ,..., , : ,
T

B p T p T p T
p N N j j p j pA B u B u B u u U U- - +

¢¢ ¢¢ ¢¢= = -
      

( )1 1 2 2 1 1 1, ,: , ,..., , : ,
T

C r T r T r T
r N N j j r j rA C v C v C v v U U- - +

¢¢ ¢¢ ¢¢= = -
      

( )1 1 2 2 1 1 1, ,: , ,..., , : ( 1, 2,..., 1)
T

D s T s T s T
s N N j j s j sA D w D w D w w U U j N- - +

¢¢ ¢¢ ¢¢= = - = -

Using this discretized form in (3.17), PRSS looks as 
follows: 
(3.17)   

2 2 22 2 2 2

2 2 22 1 1 1
( , , ) B C D

p p p r r r s s s
p r s

PRSS f g h X A A A Aq q l a m b j j
= = =

, = - + + +å å å

But, rather than a singleton, there is a fini

te sequence of the tra­deoff or penalty parameters 

( )1 2 1 2, , , , , T
l l m m j j1 2l = such that this equation is not 

yet a Tik­honov regula­ri­za­tion problem with a single such 

parameter. For this reason, let us make a uniform pena

lization by taking the same value 2
p r sl m j l d= = = =  

for each term. Then, our approximation of PRSS can be 

rearranged as
(3.18)          

2 22
22

( , , ) ,PRSS f g h X A Lq q d q, = - +

with the ( 6( -1)×Í m )-matrix

q l

m j

jml

jml

a a b b j j

a a

b b j j

q

q

q

b

a b j a a a a a a a a b b b b

b b b j j j j j j j

q q

a

a a

b b

j

q l a m b j j

l l l m1 m2 j j

l m j l d

q q qd

h

h

h h

h

h h
h

h h

h
h

k

k k k

c

j
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1

2

1

2

1

2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

B

B

C

C

D

D

A
A

A
L

A
A

A

æ ö
ç �
ç �
ç �

= ç �
ç �
ç �
ç �
è ø

.

Herewith, based on the basis splines, we have identi
fied the minimization of PRSS for some stochastic diffe
rential equation as an Tik­honov regula­ri­za­tion problem 
(Aster, Borchers and Thurber, 2005):

(3.19)                     2 22
2 2

min
m

Gm d Lmd- +

with penalty parameter 2l d= . This regularization met
hod is also known as rid­ge regression; it is very helpful 
for problems whose solution does not exist, or which is 
not unique or not stable under perturbations of the data. 
MATLAB Regularization Toolbox can be used for solu
tion (Aster, Borchers and Thurber, 2005).

4	 An Alter­na­ti­ve Solution for Tikhonov 
Regula­ri­za­tion Problem with Conic  
Qua­dra­tic Programming

4.1	 Construction of the Conic Qua­dra­tic Pro
gramming Problem

We just mentioned that we can solve a Tikhonov regulari
zation problem with MATLAB Regularization Toolbox. 
In addition, we shall ex­plain how to treat our problem 
by using conti­nuous opti­mi­za­tion techniques which we 
suppose to become a complementary key technology 
and alternative to the concept of Tikhonov regulariza
tion. In particular, we apply the elegant framework of 
conic qua­dra­tic programming (CQP). Indeed, based on 
an appropriate, learning based choice of a bound M, we 
reformulate our Tikhonov regularization as the following 
optimization problem:

(4.1)                           

2

2
2

2
subject to  

min ,

  .

q
q -

q £

A X

L M
Here, the objective function in (4.1) is not linear but 

quadratic, however, the original objective function can be 
moved to the list of constraints, and we can write an equi
valent problem as follows:

(4.2)         

,

2
2

2
2

2

min ,

subject to , 0,

,

q

q -

q

£ ³

£



t
t

A X t t

L M

or 
(4.3)                      

,

2

2

min ,

subject to ,

.

t
t

A X t

L M

q

q -

q

£

£



Then, if we consider the form of a conic quadratic opti
mization problem (Nemirovski, 2002)
(4.4)        
min , subject to ( 1, 2,..., ), T

i ii i
T q i k£ - =-

x
c x p xD x d

we can see that our optimization problem for SDE 

is a conic quadratic program with           ( )1 0 ,
TT
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In order to state the optimality conditions, we first���ly� 
reformulate�����������������    our problem as 
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Here, c  and h  belong to 1NL +  and 6( 1) 1,NL - + where 1NL +

and 6( 1) 1NL - + are the ( 1N + )- and ( 6( 1) 1N - + )-di­men

sional ice-cream (or second-or­der Lorentz) cones, defined 

by 

{ }2 2 2
1 2 1 2 -1: ( , ,..., ) | ... ( 2).TL x x x x x x x x= = Î ³ + + + ³n n

n n n nR
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Morever, 1 2( , , , , , )t c h k kq  is the primal-dual optimal 
solution if the following constrains are provided in the cor
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4.2	  On Solution Methods for Conic Qua­dra­tic 
Programming

For solving “well-structured” convex problems like conic 
quadratic problems, there are interior point methods 
(IPMs) which were firstly introduced by Kar­mar­kar 
(1984). IPMs classically base on the interior points of the 
feasible set of the optimization problem; this set is assu
med to be closed and convex. Then, an interior penalty 
function (bar­rier) ( )F x  is chosen, well defined (and 
smooth and strongly convex) in the interior of the feasible 
set. This function is “blowing up” as a sequence from the 
interior approaches a boundary point of the feasible set 
(Nesterov and Nemirovskii: 1993). Of great importance 
are pri­mal-dual IPMs which refer to the pair of primal 
and dual variables. 

The ca­noni­cal bar­rier function for second–order 
(Lorentz) cones

:n =L { x = 1 2( , ,..., )Tx x xn 2 2
1 1| ...x x xn

n n -Î ³ + +R }

( 2)n ³  is defined by 2 2
1( ) : ln(L x x xn n= - -  2

1... )xn -- -  =

ln( ),Tx J xn- where 1 0
0 1
I

J n
n

--æ ö
= ç �

è ø
. The pa­ra­meter of 

this barrier is ( ) 2.Lna =

These algorithms have the advantage of employing 
the structure of the problem, of allowing better comple
xity bounds and ex­hibiting a much better practical perfor
mance.

5	 On Nonli­near Dependence on Pa­ra­me
ters and Their Esti­ma­tion 

Let return to equation (3.2) again, with two ways 
of generalization. (i) The model functions a(.) and b(.) 
may not only depend on the parameters which appear as 
coefficients in the linear combination with base splines, 
but also on really proba­bi­li­stic (stocha­stic) parameters. 
(ii) Differently from the earlier linear dependence on 
the parameters, the dependence on the newly considered 
parameters may be nonlinear. In that case, we should use 

any nonlinear parameter estimation methods like, e.g., 
Gauss-New­ton’s method or Levenberg-Mar­quardt’s met
hod (Nash and Sofer, 1996). 

Let us look at (i), for example, we consider following 
the stochastic differential equation: 

( ) 0

,
0 ,

t t t tdX X dt X dW
X x

= +ìï
í =ïî

m s

where ( )=tX X t  denotes the (random) price of a stock 
at time 0t ³ , and m > 0 and s are parameters called the 
drift and vola­ti­lity of the stock and x0 is the starting price, 
respectively. Then, referring to the finitely many sample 
(data) points ( , ) ( 1, 2,..., )k k k =X t N  we get

( )

2
2

,

( )1 ( )( ) 1
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, .
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h h
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To determine the unknown values m, s we consider 

following optimization problem:
(5.1)  
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b ms b b
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Here, ( ), T=b ms , ( ) : ,=P X X  hence ( ) : 0k¢ =P t  
(since P does not depend on t), and the objective func
tion ( )bf  of parameter estimation is defined linearly in 
auxiliary functions fk  squared( )1,2,..., Nk = . This prob
lem representation holds true also if the quadratic term 

( )2 2(1/ 2) ( )( ) ( ) / 1k k ks ¢ D -P P t W h  would not vanish 
and in many further examples where (ii) the parametric 
dependence may be nonli­near indeed. 

Nonlinear parametric dependence can occur by the 
composition of stochastic processes. For example, in finan
cial modelling of the dynamics of wealth from time t  to 
t dt+  or maturity time T, tV , may be given by 

   ( )
0 0 ,

( ) + ,q m- q sì é ùï ë ûí
ïî

= - +

=

eT T
t tt t t t tdV r r V dt c dt V dW

V v

where qt  is the fraction of wealth invested in the risky asset 

at time t and and ct is the consumption at time t. We can easly 

identify both ( )( , , , ; , ) : ( ) +q m q m-= -eT
t t t t t ta t V c r r r V c  

and ;( , , ) : .qq s s= T
tt t tb t V V  Here, r is the short-term 

interest rate, m denotes the vector of ex­pected rates of 

return, e  is the vector consisting of ones, s  stands the 

volatility matrix of the risky assets. The entire parameter 

:= ( , , )b ms Tr  (arranged as a column vector) is assumed 

to be constant through time (Akume, 2007). Finally, W  is 

a Wiener process with the property that tdW  is (0, )N dt  

distributed. While the dependence of the right-hand side 

of the stochastic differential equation on b  is linear, nonli

near parametric dependencies can occur via the insertion 

n
n n n

n n n

n n
n

n

n

a

c

h

q

k k

k

k

k

k
c h

s

k k

k k k
k

k

k

ks k

m, sk

s

b b b
k

k k k k
kk

km, s

m, s

b

b

k

k k ks

q m q s

qq s

m, sb

q mq m
s

c h



Organizacija, Volume 41 Research papers Number 5, September-October 2008

191

of the processes ct  and qt  in a and b, but also if r becomes 

a stochastic process rt , e.g., in the following way. Namely, 

as a direct example of nonlinearity, the stochastic interest 

rate rt  for each tÎ �  may be given by 

( ) ,a s t= � - + � �t t t t tdr R r dt r dW

where st  and tW  are volatility and a Brownian motion, 

respectively Here, a is a positive constant, and the drift 

term ( )a � - tR r  is positive for tR r>  and negative for 

tR r<  (Seydel, 2003). We denote ( )( , ; ) : a= - tta t R R rr  

and ,( , ; ) : ts t s= tt t tb t r r . This process on the interest 

rate can be attached to a price or wealth process. By this 

interest rate processes and the composition of stochastic 

processes, further parameters such as ( , )tR , can impli

citly and in a partially nonlinear way enter the interest 

rate dynamics rt  and processes beyond of that dynamics.
In fact, the financial sector with the modeling and 

prediction of stock prices and interest rate are the 
most prominent application areas here. Moreover, mixed 
linear-nonlinear dependences on the parameters may be 
possible due to the linearly and the nonlinearly involved 
parameters of various kinds. This optimization problem 
(5.1) means a nonlinear least-squares estimation (or non
linear regression). In the context of data fitting, each of 
the functions fk  corresponds to a residual in our discrete 
approximation problem which may arise in a mathemati
cal modelling or in an inverse problem. Let us represent 
basic ideas of nonlinear regression theory with the help of 
(Nash and Sofer, 1996).

Now, (5.1) can be represented in vector notation: 

(5.2)                      1min ( ) : ( ) ( )
2

b b b= 
Tf F F ,

where F  is the vector-valued function 

( ) ( )1( ) : ( ),..., ( ) T p
NF f f= Î �b b b b  and where the fac

tor 1 2  serves for a more “optimal” normalization of the 

derivatives. In fact, by the chain rule we obtain 

(5.3)                        ( ) : ( ) ( ),b b bÑ = Ñf F F

where ( )bÑf  is an ( )p N´ -matrix-valued function. 
By row-wise differentiation of ( )bÑf  and using this gra
dient representation, we obtain the Hessian matrix of f :

(5.4) ( )2 2

1
( ) : ( ) ( )  ( ).

N
Tf F F f f

=

Ñ = Ñ Ñ + Ñå k k
k

b b b b b

Let *b  be a solution of (5.1) and suppose ( ) = 0f *b
. Then, ( ) = 0 ( 1,2,..., ),f * Nk k =b  i.e., all the residuals 

rk  are vanishing and the model fits data without error. As 

a result, ( *)b =F  0  and, by (5.3), ( ) = 0f *Ñ b , which 

just confirms our first-order necessary optimality condi

tion. Furthermore, we can obtain the Hessian of f  being 

2 ( *) : ( *) ( *)b b bÑ = Ñ ÑTf F F ,

which is a positive semi-definite matrix, just as we ex­pec

ted by our second-or­der necessary opti­ma­lity condi­tion. 

In case where ( *)FÑ b  is a matrix of full rank, i.e., 

( )rank ( *)bÑ =F ,p  then 2 ( *)fÑ b  is positive definite, 

i.e., second-or­der necessary opti­ma­lity condi­tion is provi

ded such that *b  is also a strict local minimizer.

From this basic idea, a number of specialized nonli
near least-squa­res methods come from. The simplest of 
this methods, called Gauss-New­ton uses this approximati
ve description in an indirect way. It make a replacement 
of the Hessian in the formula 

(5.5)                           2 ( ) ( )f q fÑ = -Ñb b ,

such that we have relation 

(5.6)                    ( ) ( ) ( ) ( )TF F q F FÑ Ñ = -Ñb b b b ,

where q is Gauss-Newton increment 1 0q = -b b . If 

( *) 0b »F  and ( )rank ( *)F pÑ =b  ( ),£ N  then, near 

to a solution *b , Gauss-Newton behaves like Newton’s 

method. However, we need not pay the computational 

cost of calculating second derivatives. Gauss-Newton’s 

method sometimes behaves poor if there is one or a num

ber of outliers, i.e., if the model does not fit the data well, 

or if ( )rank ( *)FÑ b  is not of full rank p. In these cases, 

there is a poor approximation of the Hessian.

Many other nonlinear least-squares methods can be 
interpreted as using an approximation of the second addi
tive form in the formula for the Hessian. i.e., of 

(5.7)                             ( ) 2

1
 ( ).

N

f f
=

Ñå k k
k

b b

Levenberg-Mar­quardt’s method uses the simplest of 
these approximation: 

(5.8)                           ( ) 2

1
 ( ) I ,

N

pf f
=

Ñ »å k k
k

b b l

with some scalar 0l ³ . This approximation yields the fol
lowing linear system:

(5.9)    ( )( ) ( ) I ( ) ( ).T
pF F q F FÑ Ñ + = -Ñb b l b b

We can often find Levenberg-Marquardt method 
implemented in the context of a trust-region strategy. The
re, q is obtained, e.g., by minimizing a quadratic model of 
the objective function with Gauss-Newton approximation 
of the Hessian:
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(5.10)
            

2

1min ( ) := ( ) + ( ) ( ) + ( ) ( )
2

subject to  

b b b b bì Ñ Ñ Ñï
í
ï £ Dî

T T T

q
Q q f q F F q F F q

q .

Here, l is indirectly determined by picking a value of 
D . The scalar D  can be chosen based on the effectiveness 
of the Gauss-Newton. 

Levenberg-Marquardt method can be interpreted 
as a mix­ture between Gauss-Newton method (if 0l » ) 
and steepest-descent method (if l is very large) (Aster, 
Borchers and Thurber, 2005; Nash and Sofer, 1996). An 
adaptive and sequential way of choosing l and, by this, of 
the adjustment of mix­ture between the methods of Gauss-
Newton and steepest-descent, is presented in (Nash and 
Sofer, 1996). We note that the term “l Ip” can also be regar
ded as a regularization term that shifts the eigenvalues of 

( ) ( )b bÑ ÑTF F  away from 0.

Another way to solve the system (5.9) for given

b b= k , i.e., to find the (k+1)-st iterate = kq q , constists 

in an application of least-squares estimation. If we deno

te (5.9) by Gq = d , where ( ) ( ) IT
pG F F= Ñ Ñ +b b l  

and ( ) ( )d F F= -Ñ b b , then we can study the regula

rized problem by adding to the squared residual norm 
2
2||Gq d ||-  a penalty or regularization term of the form 

2
2d 2 || Lq || , i.e.,

(5.11)         

( ) ( ) 2 2 2
2 2min  || ( ) ( ) I ( ) ( ) || || || ,b b l b b dÑ Ñ + - -Ñ +T

Nq
F F q F F Lq

where L may be the unit matrix, but it can also represent a 
discrete differentiation of first or second order. This regu
larization serves to diminish the complexity of the model. 
We recall (Aster, Borchers and Thurber, 2004) for clo
ser ex­planation about this Tik­honov regula­ri­za­tion. But 
instead of the penalization approach, we can again bound 
the regularization term 2

2|| Lq ||  by an inequality contraint. 
What is more, we can turn the optimization problem to a 
CQP problem in order to find the step kq  and, herewith, 
the next iterate 1 :b b+ = +k k kq . By this conic quadratic 
modelling and solution technique we are back in the met
hodology that we presented in Section 4. Indeed, with a 
suitable and maybe adaptive choice of an upper bound 

1M  (Içcanoglu Çekiç, Weber and Taylan, 2007; Taylan 
and Weber, 2007; Taylan, Weber and Beck, 2007) we can 
write our problem as 

(5.12) ( ) ( ) 2
2

2
2 1 

min  || ( ) ( ) I ( ) ( ) || ,

subject to  || || ,
b

b b l b bÑ Ñ + - -Ñ

£

T
NF F q F F

Lq M

or we can write an equivalent problem as follows:
  

( ) ( )
,

22 2
2 2

2
2 1

min ,

subject to ( ) ( ) I ( ) ( ) || , 0,

|| || .

t q

T
p

t

F F q F F t t

Lq M

Ñ Ñ + - -Ñ £ ³

£

b b l b b                    

Then, if we consider the general problem form (Nemi
rovski, 2002)

min , subject to ( 1,2,..., ), T
i ii i

T q i k£ - =-
x

c x p xD x d

we can see that our optimization problem for determining 
step length q is a conic qua­dra­tic program with

( )1 0 ,
TT

pc =

( ) 1 1, (0 , ), ( ) ( ),
TT

px t q D A d F F= = = -Ñ b b

1 (1,0,...,0) ,Tp = 1 0q = ,

  

2 2 2 1 2 1(0 , ), 0 , 0 and´ += = = = -p p p p pD L d p q M , 

6	 Concluding Remarks

This paper gave a new contribution to problems related 
with SDE­s using regression under an additive model or a 
nonlinear formulation, as a preparatory step on the way of 
or­ga­ni­zing assets in terms of portfolios. We made modern 
methods of inverse problems and continuous optimiza
tion, especially, CQP and methods from nonlinear regres
sion, become accessible and usable. Herewith, a bridge 
has been offered between statistical learning and data 
mining on the one hand, and the powerful tools prepared 
for well-structured convex optimization problems (Boyd 
and Vandenberghe, 2004) and Newton- and steepest-des
cent type regression methods (Nash and Sofer, 1996) on 
the other hand. We hope that future research, theoretical 
and applied achievements on this fruitful interface will be 
stimulated by our paper. The study on prediction of cre
dit-default risk (Içcanoglu Çekiç, Weber and Taylan, 2007) 
already showed the value of our generalized additive 
model approach. Indeed, further combined applications 
of our methods on real-word data from areas of finance, 
science and technology may be ex­pected, where our con
tribution can be utilized.
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INFORMS series) and is member in about 20 scientific or­ga
nizations. Prof. Weber gave presentations all over the world, 
at scientific events and in seminars.

Or­ga­ni­za­ci­ja v fi­nancah izha­ja­jo~ iz stoha­sticnih di­ferencialnih ena~b in neli­near­nih modelov zvezne opti­mi­za­ci­je

Osrednji element v or­ganizaciji finan~nih sredstev, tako sredstev posameznika kot tudi podjetja ali dru`­bene sku­pine, je  obli
kovanje, analiza in op­timizacija portfelja. To zah­teva modeliranje ~asovno spremenljivih procesov. Tako kot na mnoge procese 
v naravi, teh­niki ali gospodarstvu tudi na finan~ne procese vplivajo naklju~ne fluktuacije. Zato smo uporabili stohasti~ne dife
rencialne ena~be, saj v realnosti, še posebej v finan~nem sektor­ju, na mnoge procese vpliva naklju~ni šum. Pomanjkljivost 
tega na~ina pa je, da je te ena~be te`­ko predstaviti v obliki primer­ni za ra~unalnik, in jih je te`­ko reševati. V tem ~lanku smo 
jih izrazili na poenostavljen na~in, tako, da smo uporabili aproksimacijo tako z diskretizacijo in kot tudi aditivnimi modeli, ki 
temeljijo na zlep­kih. Dolo~anje parametrov se nanaša na linear­ne koeficiente zlep­kov in delno nelinear­ne probabilisti~ne para
metre. Izgradili smo penalizirano residualno vsoto kvadratov za ta model in obravnavali nelinear­nosti, ki os se pojavljale, z 
Gauss-Newtonovo in Levenberg-Mar­quardt-ovo metodo za dolo~anje iteracijskih korakov. Raziskovali smo tudi kdaj je s tem 
povezani program za minimizacijo lah­ko napisan kot Tikhonov problem regu­larizacije , in ga obravnavamo z uporabo zveznih 
op­timizacijskih teh­nik. Bolj natan~no, pripravimo dostop do elegantnega okvir­ja koni~nega kvadratnega programiranja. Ti kon
veksni op­timizacijski problemi so zelo dobro struktu­rirani, zato so podobni linear­nim programom, torej omogo~ajo uporabo 
metod inter­ne to~ke. 

Klju~ne besede: stohasti~ne diferencialne ena~be, regresija, statisti~no u~enje, dolo~anje parametrov, Gauss-Newtonova 
metoda, Levenberg-Mar­quardt-ova metoda, glajenje, stabilnost, metode penalov, regu­larizacija po Tikhonovu, kontinuir­na 
op­timizacija, koni~no kvadratno programıranje
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