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A central element in organization of financal means by a person, a company or societal group consists in the constitution, 
analysis and optimization of portfolios. This requests the time-depending modeling of processes. Likewise many processes 
in nature, technology and economy, financial processes suffer from stochastic fluctuations. Therefore, we consider stochastic 
differential equations (Kloeden, Platen and Schurz, 1994) since in reality, especially, in the financial sector, many processes 
are affected with noise. As a drawback, these equations are hard to represent by a computer and hard to resolve. In our paper, 
we express them in simplified manner of approximation by both a discretization and additive models based on splines. Our 
parameter estimation refers to the linearly involved spline coefficients as prepared in (Taylan and Weber, 2007) and the par-
tially nonlinearly involved probabilistic parameters. We construct a penalized residual sum of square for this model and face 
occuring nonlinearities by Gauss-Newton’s and Levenberg-Marquardt’s method on determining the iteration step. We also 
investigate when the related minimization program can be written as a Tikhonov regularization problem (sometimes called 
ridge regression), and we treat it using continuous optimization techniques. In particular, we prepare access to the elegant 
framework of conic quadratic programming. These convex optimation problems are very well-structured, herewith resembling 
linear programs and, hence, permitting the use of interior point methods (Nesterov and Nemirovskii, 1993).

Key words: Stochastic Differential Equations, Regression, Statistical Learning, Parameter Estimation, Splines, Gauss-New-
ton Method, Levenberg-Marquardt’s method, Smoothing, Stability, Penalty Methods, Tikhonov Regularization, Continuous 
Optimization, Conic Quadratic Programming.

Organization in Finance Prepared  
by Stochastic Differential Equations  
with Additive and Nonlinear Models  

and Continuous Optimization

1 Introduction

This paper is devoted to a modeling of financial proces-
ses which may serve as a basis of analysis and structural 
investigation. An important expression of this structure, 
the composition of its parts - its organization of financial 
assets - is called portfolio consisting of securities such as 
bonds, stocks, certificates, etc.. The organization of this 
portfolio requests pricing, hedging, optimization and opti-
mal control. Those processes are on single assets and price 
processes, and on larger portfolios as well. The present 
study focusses on the first part of this modeling called 
regression, especially, parameter estimation.

Real-world data from the financial sector and science 
are often characterized by their great number and by a 
high variation. At the same time, the data need to become 
well understood and they have to serve as the basis of 
future prediction. Both the real situation and the practi-
cal requests are hard to balance (Hastie, Tibshirani and 
Friedman, 2001; Taylan and Weber, 2007; Taylan, Weber 
and Beck, 2007).

In fact, related mathematical modeling faces with non-
differentiability and a high sensitivity of the model with 
respect to slightest perturbations of the data. Our paper 
analyzes this challenge by discussing and elaborating the 
corresponding parameter estimation problem by means 
of Tikhonov regularization, conic quadratic programming 
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and nonlinear regression methods. Herewith, we offer an 
alternative view and approach to stochastic differential 
equations (SDEs), and we invite to future research and 
practical applications. As a preparation, we firstly intro-
duce into our methodology of statistical learning entitled 
additive models, which we will then exploit systematically. 
Indeed, we will apply them to SDEs, using modern met-
hods of regularization and optimization. We shall address 
both the linear and the nonlinear case of parameter esti-
mation. By this we develop and improve the results made 
in (Taylan and Weber, 2007).

2 Classical Additive Models 

Regression models are very important in many applied 

areas, the additive model (Buja, Hastie and Tibshirani,Hastie and Tibshirani,, 

1989) is one of them. These models estimate an additive 

approximation of the multivariate regression function. 

For N observations on a response (or dependent) variable 

Y, denoted by 1 2( , ,..., )T
ny y yy =  measured at N design 

vector ( )1 1, ,...,
T

i i i i mx x x=x , the additive model is defi-

ned by 

(2.1)                       ( )0
1

m

j j
j

Y f Xb e
=

= + +å , 

where the errors e are independent of the factors, Xj,

E(e) = 0 and Var(e) = s2. Here, the functions jf  are 

arbitrary unknown, univariate functions, they are mostly 

considered to be splines and we denote the estimates by 

jf̂ . The standard convention consists in assuming at jX  

that ( )( ) 0j jE f X = , since otherwise there will be a free 

constant in each of the functions (Hastie, Tibshirani and 

Friedman, 2001); all such constants are summarized by the 

intercept (bias) b0. 

1.1 Estimation Equations for Additive Model

Additive models have a strong motivation as a useful data 

analytic tool. Each function is estimated by an algorithm 

proposed by (Friedman and Stuetzle, 1981) and called 

backfitting (or Gauss-Seidel) algorithm. As our estima-

tor for b0, the mean of the response variable Y is used: 

0
ˆ ( )E Yb = . This procedure depends on the partial resi-

dual against jX :

(2.2)                    ( )0j k k
k j

r Y f Xb
¹

= - -å ,

and it consists of estimating each smooth function by hol-

ding all the other ones fixed . Then, ( ) ( )j j j jE r X f X=  

which minimizes ( )( )2

0 1
b

=
- -åm

j jj
E Y f X  (Friedman and 

Stuetzle, 1981; Hastie and Tibshirani, 1987).

3 Stochastic Differential Equations

3.1 Definition (Stochastic Differential  
Equations)

Many phenomena in nature, technology and economy are 
modelled by means of a deterministic differential equa-
tion with initial value 0 :x Î �

                          
0

(: ) ( , ),
(0) .

x dx dt a x t
x x

= =ì
í =î



But this type of modeling omits stochastic fluctua-
tions and is not appropriate for, e.g., stock prices. To consi-
der stochastic movements, stochastic differential equation 
(SDE) are used since they arise in modeling many pheno-
mena, such as random dynamics in the physical, biological 
and social sciences, in engineering and economy. Solutions 
of these equations are often diffusion processes and, hen-
ce, they are connected to the subject of partial differential 
equations. We try to find a solution for these equations by 
an additive approximation (cf. Section 2), which is very 
famous in the statistical area, using spline functions.

Typically, a stochastic differential equation, equipped 
with an initial value, is given by 

(3.1)        
0

( ) ( , ) ( , ) ( [0, )),
(0) ,

tX t a X t b X t t
X x

ì = + Î ¥ï
í

=ïî

 d

where a is the deterministic part, bdt is the stochastic part, 
and dt 

denotes a generalized stochastic process (Kloeden, 
Platen and Schurz, 1994; Øksendal, 2003). 

An example of a generalized stochastic processes is 
white noise. For a generalized stochastic processes, deri-
vatives of any order can be defined. Suppose that tW  is 
a generalized version of a Wiener process which is used 
to model the motion of stock prices, which instantly res-
ponds to the numerous upcoming informations. A one-
dimensional Wiener process (or a Brownian motion) is a 
time continuous process with the following properties.

1. 0 0,W = with probability one.

2. (0, ) for all (0 ),tW N t t t TÎ £ £� that is, for each t 

the random variable tW  is normally distributed with 

mean [ ] 0tE W =  and variance [ ] 2Var t tW E W té ù= =ë û .

3. All increments :t t t tW W W+DD = -  on nonoverlapping 

time intervals are independent. That is, the displace-

ments 
2 1t tW W- and 

4 3t tW W- are independent for all 

1 2 3 40 t t t t£ < £ < .
 
We note that a multi-dimensional Wiener processes 

can be similarly defined. Usually a Wiener process is diffe-
rentiable almost nowhere. To obtain our approximate and, 
then, smoothened model, we treat tW  as if it was differen-
tiable (a first approach which is widespread in literature). 
Then, white noise dt 

is defined as t t tW dW dtd = =  and 
a Wiener process can be obtained by smoothing the white 

b0 e

b0

b0 dt

d

b0



Organizacija, Volume 41 Research papers Number 5, September-October 2008

187

noise. If we replace tdtd  by tdW  in equation (3.1), then, 
this stochastic differential equation can be rewritten as 

(3.2)                    ( , ) ( , )t t t tdX a X t dt b X t dW= + ,
 

where ( , )ta X t  and ( , )tb X t  are drift and diffusion term, 
respectively, and tX  is a solution which we try to find 
based on the experimental data. Equation (3.2) is called 

ˆIto  SDE. Here we want to simulate values of tX , since 
we do not know its distribution. For this reason, we simu-
late a discretized version of the SDE.

3.2 Discretization of SDE

There are a number of discretization schemes available; 

we choose the Milstein scheme. Then, we represent an 

approximation ˆ
jtX , in short: ˆ ( )ÎjX j IN , of the process

tX  by 

(3.3) 1 1 1

2
1 1

ˆ ˆ ˆ ˆ( , )( ) ( , )( )

1 ˆ( )( , ) ( ) ( ) ,
2

j j j j j j j j j j

j j j j j j

X X a X t t t b X t W W

b b X t W W t t

+ + +

+ +

= + - + -

¢ é ù+ - - -ë û

where the prime “' ” denotes the derivative with respect 

to t. Now, particularly referring to the finitely many sam-

ple (data) points ( , ) ( 1, 2,..., ),=j jX t j N  we get

(3.4) 
2

( , ) ( , )

( )
1 2( )( , ) 1 .

D
= +

æ öD
¢+ -ç �ç �è ø

 j
j j j j j

j

j
j j

j

W
X a X t b X t

h

W
b b X t

h

Here, the value jX  represents a difference quotient 

based on the j th experimental data jX  and on step 

lengths 1: +D = = -j j j jt h t t  between neighbouring sam-

pling times:

           
1

1

, if 1, 2,..., 1,
:

, if .

+

-

ì -
= -ï

ï= í
-ï =ïî



j j

j
j

N N

N

X X
j N

h
X

X X j N
h

The relations (3.4) cannot be expected to hold in an 
exact sense, since they include real data, but we satisfy 
them best in the approximate sense of least squares of 
errors. For the sake of convenience, we still write “=” 
instead of the approximation symbol “ » ”, and we shall 
study the least-squares estimation in Subsection 3.3.

    
Since (0, )tW N t� , the increments jWD  are inde-

pendent on non-overlapping intervals and moreover, 
Var( )D = Dj jW t , hence, the increments having normal 
distribution can be simulated with the help of standard 
normal distributed random numbers jZ . Herewith, we 
obtain a discrete model for a Wiener process:

(3.5)              , (0,1)D = D �j j j jW Z t Z N .

If we use this value in our discretized equation, we 
obtain

(3.6) ( )21( , ) ( , ) ( )( , ) 1
2

¢= + + - j
j j j j j j j j

j

Z
X a X t b X t b b X t Z

h
.

For simplicity, we write equation (3.6) as
               

(3.7)           ( ) ,j j j j j j jX G H c H H d¢= + +

where 

( )2: , : 1 2 1 , : ( , ) and : ( , )= = - = =j j j j j j j j j j jc Z h d Z G a X t H b X t . 

To find the unknown values of jG and jH , we consi-
der the following optimization problem:

(3.8)               ( )2

21
min ( ( ) )

=

¢- + +å 
N

j j j j j j jy j
X G H c H H d .

Here, y is a vector which comprises all the parame-
ters in the Milstein model. We point out that also vector-
valued processes could be studied, then referring to sums 
of terms in the Euclidean norm 2

2
� . Data from the stock 

market, but also from other sources of information or com-
muncation, have a high variation. 

Then, we must use a parameter estimation methods 
which will diminish this high variation and will give a 
smoother approximation to the data. Splines are more 
flexible and they allow us to avoid large oscillation obser-
ved for high-degree polynomial approximation. We recall 
that these functions can be described as linear combina-
tions of basis splines and approximate the data ( , )j jX t  
smoothly. Therefore, we approximate each function 
underlying the values ( , )j j jG a X t= , ( , )=j j jH b X t  
and ( , )¢=j j jF b b X t  in an additive way established on 
basis splines. This treatment is very useful for the stabi-
lity of the model in the presence of the many and highly 
varying data. Let us use basis splines for each function 
characterized by a separation of variables (coordinates); 
e.g., in equation (3.7):

(3.9)

         
2 2

0 , 0 ,
1 1 1

2 2

0 , 0 ,
1 1 1

2 2

0 , 0 ,
1 1 1

( , ) ( ) ( ),

( , ) ( ) ( ),

( , ) ( ) ( ),

a a a

b b b

j j j

= = =

= = =

= = =

= = + = +

= = + = +

¢= = + = +

å åå

å åå

å åå

g
p

h
r

f
s

d
l l

j j j p j p p p j p
p p l

d
m m

j j j j j r j r r r j r
r r m

d
n n

j j j j j s j s s s j s
s s n

G a X t f U B U

H c b X t c g U C U

F d b b X t d h U D U

where ( ) ( ),1 ,2, : , .j j j j jU U U X t= = Let us give an exam-
ple on how one can gain bases of splines. If we denote the 
kth order basis spline by ,h kB , a polynomial of degree k 
−1 with knots, say xh , then a great benefit of using the 
base splines is provided by the following recursive algo-
rithm (De Boor, 2001): 

dt

b0b0 b

aa0 a0

j0 j0 j

h

h
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(3.10)

           
1

,1

, , 1 1, 1
1 1

1, if
( )

0, otherwise,

( ) ( ) ( ).k
k k k

k k

x x x
B x

x x x x
B x B x B x

x x x x

h h
h

h h
h h h

h h h h

+

+
- + -

+ - + +

£ <ì
= í

î

- -
= +

- -

3.4 The Penalized Residual Sum of Squares 
Problem for SDE

We construct the penalized residual sum of squares for 
SDE in the following form:
(3.11) ( ){ }

[ ] [ ]

22 2

1 1

2 2
2 2

1 1

( , , ) : ( )

( ) ( ) .

N

j j j j j j p p p p
j p

r r r r s s s s
r s

PRSS f g h X G H c F d f U dU

g U dU h U dU

q l

m j

= =

= =

¢¢é ù, = - + + + ë û

¢¢ ¢¢+ +

å å ò

å åò ò



Here, for convenience, we use the integral symbol “ ò” as a 

dummy in the sen se of 
[ , ]

,
a bc k

ò  where [ , ] ( , , )a b p r sk k k =  

are appropriately large intervals where the integration 

takes place, respectively. Furthermore, , , 0p r sl m j ³  are 

smoothing (or penalty) parameters, they represent a tra-

deoff between first and second term. Large values of 

, ,p r sl m j  yield smoother curves, smaller values result in 

more fluctuation. If we use an additive form based on the 

basis splines for each function, then PRSS will become

( ){ }2

1

2
2 2 2

0 , 0 , 0 ,
1 1 1 1 1 1 1

(3.12)     

( ) ( ) ( ) .
h fg
p sr

N

j j j j j j
j

d ddN
l l m m n n

j p p j p r r j r s s j s
j p l r m s n

X G H c F d

X B U C U D Ua a b b j j

=

= = = = = = =

- + + =

ì üæ öï ï- ç + + + + + �í ýç �ï ïè øî þ

å

å åå åå åå





For simplicity, we introduce the following matrix nota-
tion:

(3.13)

      2

0 ,
1 1

2 2

0 , 0 ,
1 1 1 1

( )

( ) ( )

g
p

fh
sr

d
l l

j j j j j p p j p
p l

dd
m m n n
r r j r s s j s

r m s n

j

G H c F d B U

C U D U

A

a a

b b j j

q,

= =

= = = =

+ + = + +

+ + + +

=

åå

åå åå

where 

( ) ( ) ( ) ( )
( ) ( )
( )

1 2 1 2 1 2

1 2 1 2
, , , , , ,

1 2
, , ,

, 1 , 1 , 1

( ), ( ),..., ( ) ( 1, 2), ( ), ( ),..., ( ) ( 1, 2),

( ), ( ),..., ( ) ( 1, 2) and 

g h
p r

f
s

j j j j j j j j j j j j j

d dp r
j p j p p j p p j p j r j r r j r r j r

ds
j s j s s j s s j s

A B C D B B B C C C D D D

B B U B U B U p C C U C U C U r

D D U B U B U s

= = = =

= = = =

= =

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2
0 1 2 0 1 2

1 2 1 2
0 1 2

, , , , , , , ,..., ( 1, 2), , , ,

, ,..., ( 1, 2), , , , , ,..., ( 1, 2).

g
p

fh
sr

TT T TdT T T T T T T
p p p p

TT dd T T
r r r r s s s s

p

r s

q a b j a a a a a a a a b b b b

b b b b j j j j j j j j

= = = = =

= = = = =

Now, we can obtain the residual sum of squares as the 

squared length of the difference between X  and Aq , whe-

re A  is matrix which contains the row vectors jA , and

X  is our vector of difference quotients standing for the 

change rates of the experimental data: 

(3.14)                     { } 22

21

N

j j
j

X A X Aq q
=

- = -å   ,

where ( ) ( )1 2 1 2, ,..., , , ,..., .
TTT T T

N NA A A A X X X X= =      
 
Indeed, we get a discretized form of each integration 
term in the following way:

(3.15)             
12 2

1,
1

2
1

1 1

( ) ( ) ( )

( ) .
g
p

b N

p p p p jp j p jp
ja

dN
l l
p p jP j

j l

f U dU f U U U

B U ua

-

+
=

-

= =

é ù é ù¢¢ ¢¢@ -ë û ë û

é ù
¢¢= ê ú

ê úë û

åò

å å
Using Riemann sums, we can discretize and repre-

sent each integration by the squared length of a vector, 
namely,

(3.16) 

[ ]

12 2 2

2
1

1 2 22

2
1

12 2 2

2
1

( ) ( 1, 2),

( ) ( 1, 2),

( ) ( 1, 2).

b N
p B

p p p j j p P p
ja

b N
r C

r r r j j r r r
ja

b N
s s D

s s s j j s j s s
ja

f U dU B u A p

g U dU C v A r

h U dU D w D A s

a a

b b

j j

-

=

-

=

-

=

é ù é ù¢¢ ¢¢@ = =ë û ë û

é ù¢¢¢¢ @ = =ë û

é ù é ù¢¢ ¢¢@ = =ë û ë û

åò

åò

åò

Here, 

( )1 1 2 2 1 1 1, ,: , ,..., , : ,
T

B p T p T p T
p N N j j p j pA B u B u B u u U U- - +

¢¢ ¢¢ ¢¢= = -
      

( )1 1 2 2 1 1 1, ,: , ,..., , : ,
T

C r T r T r T
r N N j j r j rA C v C v C v v U U- - +

¢¢ ¢¢ ¢¢= = -
      

( )1 1 2 2 1 1 1, ,: , ,..., , : ( 1, 2,..., 1)
T

D s T s T s T
s N N j j s j sA D w D w D w w U U j N- - +

¢¢ ¢¢ ¢¢= = - = -

Using this discretized form in (3.17), PRSS looks as 
follows: 
(3.17)   

2 2 22 2 2 2

2 2 22 1 1 1
( , , ) B C D

p p p r r r s s s
p r s

PRSS f g h X A A A Aq q l a m b j j
= = =

, = - + + +å å å

But, rather than a singleton, there is a fini-

te sequence of the tradeoff or penalty parameters 

( )1 2 1 2, , , , , T
l l m m j j1 2l = such that this equation is not 

yet a Tikhonov regularization problem with a single such 

parameter. For this reason, let us make a uniform pena-

lization by taking the same value 2
p r sl m j l d= = = =  

for each term. Then, our approximation of PRSS can be 

rearranged as
(3.18)          

2 22
22

( , , ) ,PRSS f g h X A Lq q d q, = - +

with the ( 6( -1)×Í m )-matrix

q l

m j

jml

jml

a a b b j j

a a

b b j j

q

q

q

b

a b j a a a a a a a a b b b b

b b b j j j j j j j

q q

a

a a

b b

j

q l a m b j j

l l l m1 m2 j j

l m j l d

q q qd

h

h

h h

h

h h
h

h h

h
h

k

k k k

c

j
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1

2

1

2

1

2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

B

B

C

C

D

D

A
A

A
L

A
A

A

æ ö
ç �
ç �
ç �

= ç �
ç �
ç �
ç �
è ø

.

Herewith, based on the basis splines, we have identi-
fied the minimization of PRSS for some stochastic diffe-
rential equation as an Tikhonov regularization problem 
(Aster, Borchers and Thurber, 2005):

(3.19)                     2 22
2 2

min
m

Gm d Lmd- +

with penalty parameter 2l d= . This regularization met-
hod is also known as ridge regression; it is very helpful 
for problems whose solution does not exist, or which is 
not unique or not stable under perturbations of the data. 
MATLAB Regularization Toolbox can be used for solu-
tion (Aster, Borchers and Thurber, 2005).

4 An Alternative Solution for Tikhonov 
Regularization Problem with Conic  
Quadratic Programming

4.1 Construction of the Conic Quadratic Pro-
gramming Problem

We just mentioned that we can solve a Tikhonov regulari-
zation problem with MATLAB Regularization Toolbox. 
In addition, we shall explain how to treat our problem 
by using continuous optimization techniques which we 
suppose to become a complementary key technology 
and alternative to the concept of Tikhonov regulariza-
tion. In particular, we apply the elegant framework of 
conic quadratic programming (CQP). Indeed, based on 
an appropriate, learning based choice of a bound M, we 
reformulate our Tikhonov regularization as the following 
optimization problem:

(4.1)                           

2

2
2

2
subject to  

min ,

  .

q
q -

q £

A X

L M
Here, the objective function in (4.1) is not linear but 

quadratic, however, the original objective function can be 
moved to the list of constraints, and we can write an equi-
valent problem as follows:

(4.2)         

,

2
2

2
2

2

min ,

subject to , 0,

,

q

q -

q

£ ³

£



t
t

A X t t

L M

or 
(4.3)                      

,

2

2

min ,

subject to ,

.

t
t

A X t

L M

q

q -

q

£

£



Then, if we consider the form of a conic quadratic opti-
mization problem (Nemirovski, 2002)
(4.4)        
min , subject to ( 1, 2,..., ), T

i ii i
T q i k£ - =-

x
c x p xD x d

we can see that our optimization problem for SDE 

is a conic quadratic program with           ( )1 0 ,
TT

mc =

( ) 1 1, (0 , ), ,
TT

Nx t D A d Xq= = = 

1 (1,0,...,0) ,Tp = 1 0q = ,

2 6( 1) 2 1 1 1(0 , ), 0, 0 ,T
N mD L d p q M- += = = = - , 

2 2 2

1 1 1
3.g h h

p r r
p r s

m d d d
= = =

= + + +å å å

In order to state the optimality conditions, we firstlyly 
reformulate our problem as our problem as 
(4.5)

(4.5)                
,

6( 1)6( 1)

min ,

0
such that : ,

1 0 0

00
: .

0 0

t

N
T
m

NN
T
m

t

tA X

t
M

q

c
q

h
q

--

æ öæ öæ ö -= + ç �ç � ç � ç �è øè ø è ø
æ öæ öæ ö

= + ç �ç � ç � ç �è øè ø è ø



L

Here, c  and h  belong to 1NL +  and 6( 1) 1,NL - + where 1NL +

and 6( 1) 1NL - + are the ( 1N + )- and ( 6( 1) 1N - + )-dimen-

sional ice-cream (or second-order Lorentz) cones, defined 

by 

{ }2 2 2
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Then, we can also write the dual problem to the latter 
problem as 
(4.6)
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Morever, 1 2( , , , , , )t c h k kq  is the primal-dual optimal 
solution if the following constrains are provided in the cor-
responding ice-cream (second-order Lorentz) cones:
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4.2  On Solution Methods for Conic Quadratic 
Programming

For solving “well-structured” convex problems like conic 
quadratic problems, there are interior point methods 
(IPMs) which were firstly introduced by Karmarkar 
(1984). IPMs classically base on the interior points of the 
feasible set of the optimization problem; this set is assu-
med to be closed and convex. Then, an interior penalty 
function (barrier) ( )F x  is chosen, well defined (and 
smooth and strongly convex) in the interior of the feasible 
set. This function is “blowing up” as a sequence from the 
interior approaches a boundary point of the feasible set 
(Nesterov and Nemirovskii: 1993). Of great importance 
are primal-dual IPMs which refer to the pair of primal 
and dual variables. 

The canonical barrier function for second–order 
(Lorentz) cones

:n =L { x = 1 2( , ,..., )Tx x xn 2 2
1 1| ...x x xn

n n -Î ³ + +R }

( 2)n ³  is defined by 2 2
1( ) : ln(L x x xn n= - -  2

1... )xn -- -  =

ln( ),Tx J xn- where 1 0
0 1
I

J n
n

--æ ö
= ç �

è ø
. The parameter of 

this barrier is ( ) 2.Lna =

These algorithms have the advantage of employing 
the structure of the problem, of allowing better comple-
xity bounds and exhibiting a much better practical perfor-
mance.

5 On Nonlinear Dependence on Parame-
ters and Their Estimation 

Let return to equation (3.2) again, with two ways 
of generalization. (i) The model functions a(.) and b(.) 
may not only depend on the parameters which appear as 
coefficients in the linear combination with base splines, 
but also on really probabilistic (stochastic) parameters. 
(ii) Differently from the earlier linear dependence on 
the parameters, the dependence on the newly considered 
parameters may be nonlinear. In that case, we should use 

any nonlinear parameter estimation methods like, e.g., 
Gauss-Newton’s method or Levenberg-Marquardt’s met-
hod (Nash and Sofer, 1996). 

Let us look at (i), for example, we consider following 
the stochastic differential equation: 

( ) 0

,
0 ,

t t t tdX X dt X dW
X x

= +ìï
í =ïî

m s

where ( )=tX X t  denotes the (random) price of a stock 
at time 0t ³ , and m > 0 and s are parameters called the 
drift and volatility of the stock and x0 is the starting price, 
respectively. Then, referring to the finitely many sample 
(data) points ( , ) ( 1, 2,..., )k k k =X t N  we get

( )

2
2

,

( )1 ( )( ) 1
2

, .

W WX X X P P t
h h
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æ öD D¢= + + -ç �
è ø

=

 k k
k k k k

k k

k

m s s

ms
To determine the unknown values m, s we consider 

following optimization problem:
(5.1)  

( ) ( ) ( ) ( )
2

2 2
,

1 1 1

1min : , : or  
2

N N N

f X g X f f
= = =

æ öæ ö= - =ç � ç �è ø è ø
å å å

 k k k k
k k k

b ms b b
.

Here, ( ), T=b ms , ( ) : ,=P X X  hence ( ) : 0k¢ =P t  
(since P does not depend on t), and the objective func-
tion ( )bf  of parameter estimation is defined linearly in 
auxiliary functions fk  squared( )1,2,..., Nk = . This prob-
lem representation holds true also if the quadratic term 

( )2 2(1/ 2) ( )( ) ( ) / 1k k ks ¢ D -P P t W h  would not vanish 
and in many further examples where (ii) the parametric 
dependence may be nonlinear indeed. 

Nonlinear parametric dependence can occur by the 
composition of stochastic processes. For example, in finan-
cial modelling of the dynamics of wealth from time t  to 
t dt+  or maturity time T, tV , may be given by 

   ( )
0 0 ,

( ) + ,q m- q sì é ùï ë ûí
ïî

= - +

=

eT T
t tt t t t tdV r r V dt c dt V dW

V v

where qt  is the fraction of wealth invested in the risky asset 

at time t and and ct is the consumption at time t. We can easly 

identify both ( )( , , , ; , ) : ( ) +q m q m-= -eT
t t t t t ta t V c r r r V c  

and ;( , , ) : .qq s s= T
tt t tb t V V  Here, r is the short-term 

interest rate, m denotes the vector of expected rates of 

return, e  is the vector consisting of ones, s  stands the 

volatility matrix of the risky assets. The entire parameter 

:= ( , , )b ms Tr  (arranged as a column vector) is assumed 

to be constant through time (Akume, 2007). Finally, W  is 

a Wiener process with the property that tdW  is (0, )N dt  

distributed. While the dependence of the right-hand side 

of the stochastic differential equation on b  is linear, nonli-

near parametric dependencies can occur via the insertion 
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of the processes ct  and qt  in a and b, but also if r becomes 

a stochastic process rt , e.g., in the following way. Namely, 

as a direct example of nonlinearity, the stochastic interest 

rate rt  for each tÎ �  may be given by 

( ) ,a s t= � - + � �t t t t tdr R r dt r dW

where st  and tW  are volatility and a Brownian motion, 

respectively Here, a is a positive constant, and the drift 

term ( )a � - tR r  is positive for tR r>  and negative for 

tR r<  (Seydel, 2003). We denote ( )( , ; ) : a= - tta t R R rr  

and ,( , ; ) : ts t s= tt t tb t r r . This process on the interest 

rate can be attached to a price or wealth process. By this 

interest rate processes and the composition of stochastic 

processes, further parameters such as ( , )tR , can impli-

citly and in a partially nonlinear way enter the interest 

rate dynamics rt  and processes beyond of that dynamics.
In fact, the financial sector with the modeling and 

prediction of stock prices and interest rate are the 
most prominent application areas here. Moreover, mixed 
linear-nonlinear dependences on the parameters may be 
possible due to the linearly and the nonlinearly involved 
parameters of various kinds. This optimization problem 
(5.1) means a nonlinear least-squares estimation (or non-
linear regression). In the context of data fitting, each of 
the functions fk  corresponds to a residual in our discrete 
approximation problem which may arise in a mathemati-
cal modelling or in an inverse problem. Let us represent 
basic ideas of nonlinear regression theory with the help of 
(Nash and Sofer, 1996).

Now, (5.1) can be represented in vector notation: 

(5.2)                      1min ( ) : ( ) ( )
2

b b b= 
Tf F F ,

where F  is the vector-valued function 

( ) ( )1( ) : ( ),..., ( ) T p
NF f f= Î �b b b b  and where the fac-

tor 1 2  serves for a more “optimal” normalization of the 

derivatives. In fact, by the chain rule we obtain 

(5.3)                        ( ) : ( ) ( ),b b bÑ = Ñf F F

where ( )bÑf  is an ( )p N´ -matrix-valued function. 
By row-wise differentiation of ( )bÑf  and using this gra-
dient representation, we obtain the Hessian matrix of f :

(5.4) ( )2 2

1
( ) : ( ) ( )  ( ).

N
Tf F F f f

=

Ñ = Ñ Ñ + Ñå k k
k

b b b b b

Let *b  be a solution of (5.1) and suppose ( ) = 0f *b
. Then, ( ) = 0 ( 1,2,..., ),f * Nk k =b  i.e., all the residuals 

rk  are vanishing and the model fits data without error. As 

a result, ( *)b =F  0  and, by (5.3), ( ) = 0f *Ñ b , which 

just confirms our first-order necessary optimality condi-

tion. Furthermore, we can obtain the Hessian of f  being 

2 ( *) : ( *) ( *)b b bÑ = Ñ ÑTf F F ,

which is a positive semi-definite matrix, just as we expec-

ted by our second-order necessary optimality condition. 

In case where ( *)FÑ b  is a matrix of full rank, i.e., 

( )rank ( *)bÑ =F ,p  then 2 ( *)fÑ b  is positive definite, 

i.e., second-order necessary optimality condition is provi-

ded such that *b  is also a strict local minimizer.

From this basic idea, a number of specialized nonli-
near least-squares methods come from. The simplest of 
this methods, called Gauss-Newton uses this approximati-
ve description in an indirect way. It make a replacement 
of the Hessian in the formula 

(5.5)                           2 ( ) ( )f q fÑ = -Ñb b ,

such that we have relation 

(5.6)                    ( ) ( ) ( ) ( )TF F q F FÑ Ñ = -Ñb b b b ,

where q is Gauss-Newton increment 1 0q = -b b . If 

( *) 0b »F  and ( )rank ( *)F pÑ =b  ( ),£ N  then, near 

to a solution *b , Gauss-Newton behaves like Newton’s 

method. However, we need not pay the computational 

cost of calculating second derivatives. Gauss-Newton’s 

method sometimes behaves poor if there is one or a num-

ber of outliers, i.e., if the model does not fit the data well, 

or if ( )rank ( *)FÑ b  is not of full rank p. In these cases, 

there is a poor approximation of the Hessian.

Many other nonlinear least-squares methods can be 
interpreted as using an approximation of the second addi-
tive form in the formula for the Hessian. i.e., of 

(5.7)                             ( ) 2

1
 ( ).

N

f f
=

Ñå k k
k

b b

Levenberg-Marquardt’s method uses the simplest of 
these approximation: 

(5.8)                           ( ) 2

1
 ( ) I ,

N

pf f
=

Ñ »å k k
k

b b l

with some scalar 0l ³ . This approximation yields the fol-
lowing linear system:

(5.9)    ( )( ) ( ) I ( ) ( ).T
pF F q F FÑ Ñ + = -Ñb b l b b

We can often find Levenberg-Marquardt method 
implemented in the context of a trust-region strategy. The-
re, q is obtained, e.g., by minimizing a quadratic model of 
the objective function with Gauss-Newton approximation 
of the Hessian:
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(5.10)
            

2

1min ( ) := ( ) + ( ) ( ) + ( ) ( )
2

subject to  

b b b b bì Ñ Ñ Ñï
í
ï £ Dî

T T T

q
Q q f q F F q F F q

q .

Here, l is indirectly determined by picking a value of 
D . The scalar D  can be chosen based on the effectiveness 
of the Gauss-Newton. 

Levenberg-Marquardt method can be interpreted 
as a mixture between Gauss-Newton method (if 0l » ) 
and steepest-descent method (if l is very large) (Aster, 
Borchers and Thurber, 2005; Nash and Sofer, 1996). An 
adaptive and sequential way of choosing l and, by this, of 
the adjustment of mixture between the methods of Gauss-
Newton and steepest-descent, is presented in (Nash and 
Sofer, 1996). We note that the term “l Ip” can also be regar-
ded as a regularization term that shifts the eigenvalues of 

( ) ( )b bÑ ÑTF F  away from 0.

Another way to solve the system (5.9) for given

b b= k , i.e., to find the (k+1)-st iterate = kq q , constists 

in an application of least-squares estimation. If we deno-

te (5.9) by Gq = d , where ( ) ( ) IT
pG F F= Ñ Ñ +b b l  

and ( ) ( )d F F= -Ñ b b , then we can study the regula-

rized problem by adding to the squared residual norm 
2
2||Gq d ||-  a penalty or regularization term of the form 

2
2d 2 || Lq || , i.e.,

(5.11)         

( ) ( ) 2 2 2
2 2min  || ( ) ( ) I ( ) ( ) || || || ,b b l b b dÑ Ñ + - -Ñ +T

Nq
F F q F F Lq

where L may be the unit matrix, but it can also represent a 
discrete differentiation of first or second order. This regu-
larization serves to diminish the complexity of the model. 
We recall (Aster, Borchers and Thurber, 2004) for clo-
ser explanation about this Tikhonov regularization. But 
instead of the penalization approach, we can again bound 
the regularization term 2

2|| Lq ||  by an inequality contraint. 
What is more, we can turn the optimization problem to a 
CQP problem in order to find the step kq  and, herewith, 
the next iterate 1 :b b+ = +k k kq . By this conic quadratic 
modelling and solution technique we are back in the met-
hodology that we presented in Section 4. Indeed, with a 
suitable and maybe adaptive choice of an upper bound 

1M  (Içcanoglu Çekiç, Weber and Taylan, 2007; Taylan 
and Weber, 2007; Taylan, Weber and Beck, 2007) we can 
write our problem as 

(5.12) ( ) ( ) 2
2

2
2 1 

min  || ( ) ( ) I ( ) ( ) || ,

subject to  || || ,
b

b b l b bÑ Ñ + - -Ñ

£

T
NF F q F F

Lq M

or we can write an equivalent problem as follows:
  

( ) ( )
,

22 2
2 2

2
2 1

min ,

subject to ( ) ( ) I ( ) ( ) || , 0,

|| || .

t q

T
p

t

F F q F F t t

Lq M

Ñ Ñ + - -Ñ £ ³

£

b b l b b                    

Then, if we consider the general problem form (Nemi-
rovski, 2002)

min , subject to ( 1,2,..., ), T
i ii i

T q i k£ - =-
x

c x p xD x d

we can see that our optimization problem for determining 
step length q is a conic quadratic program with

( )1 0 ,
TT

pc =

( ) 1 1, (0 , ), ( ) ( ),
TT

px t q D A d F F= = = -Ñ b b

1 (1,0,...,0) ,Tp = 1 0q = ,

  

2 2 2 1 2 1(0 , ), 0 , 0 and´ += = = = -p p p p pD L d p q M , 

6 Concluding Remarks

This paper gave a new contribution to problems related 
with SDEs using regression under an additive model or a 
nonlinear formulation, as a preparatory step on the way of 
organizing assets in terms of portfolios. We made modern 
methods of inverse problems and continuous optimiza-
tion, especially, CQP and methods from nonlinear regres-
sion, become accessible and usable. Herewith, a bridge 
has been offered between statistical learning and data 
mining on the one hand, and the powerful tools prepared 
for well-structured convex optimization problems (Boyd 
and Vandenberghe, 2004) and Newton- and steepest-des-
cent type regression methods (Nash and Sofer, 1996) on 
the other hand. We hope that future research, theoretical 
and applied achievements on this fruitful interface will be 
stimulated by our paper. The study on prediction of cre-
dit-default risk (Içcanoglu Çekiç, Weber and Taylan, 2007) 
already showed the value of our generalized additive 
model approach. Indeed, further combined applications 
of our methods on real-word data from areas of finance, 
science and technology may be expected, where our con-
tribution can be utilized.
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Organizacija v financah izhajajo~ iz stohasticnih diferencialnih ena~b in nelinearnih modelov zvezne optimizacije

Osrednji element v organizaciji finan~nih sredstev, tako sredstev posameznika kot tudi podjetja ali dru`bene skupine, je  obli-
kovanje, analiza in optimizacija portfelja. To zahteva modeliranje ~asovno spremenljivih procesov. Tako kot na mnoge procese 
v naravi, tehniki ali gospodarstvu tudi na finan~ne procese vplivajo naklju~ne fluktuacije. Zato smo uporabili stohasti~ne dife-
rencialne ena~be, saj v realnosti, še posebej v finan~nem sektorju, na mnoge procese vpliva naklju~ni šum. Pomanjkljivost 
tega na~ina pa je, da je te ena~be te`ko predstaviti v obliki primerni za ra~unalnik, in jih je te`ko reševati. V tem ~lanku smo 
jih izrazili na poenostavljen na~in, tako, da smo uporabili aproksimacijo tako z diskretizacijo in kot tudi aditivnimi modeli, ki 
temeljijo na zlepkih. Dolo~anje parametrov se nanaša na linearne koeficiente zlepkov in delno nelinearne probabilisti~ne para-
metre. Izgradili smo penalizirano residualno vsoto kvadratov za ta model in obravnavali nelinearnosti, ki os se pojavljale, z 
Gauss-Newtonovo in Levenberg-Marquardt-ovo metodo za dolo~anje iteracijskih korakov. Raziskovali smo tudi kdaj je s tem 
povezani program za minimizacijo lahko napisan kot Tikhonov problem regularizacije , in ga obravnavamo z uporabo zveznih 
optimizacijskih tehnik. Bolj natan~no, pripravimo dostop do elegantnega okvirja koni~nega kvadratnega programiranja. Ti kon-
veksni optimizacijski problemi so zelo dobro strukturirani, zato so podobni linearnim programom, torej omogo~ajo uporabo 
metod interne to~ke. 

Klju~ne besede: stohasti~ne diferencialne ena~be, regresija, statisti~no u~enje, dolo~anje parametrov, Gauss-Newtonova 
metoda, Levenberg-Marquardt-ova metoda, glajenje, stabilnost, metode penalov, regularizacija po Tikhonovu, kontinuirna 
optimizacija, koni~no kvadratno programıranje
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