
Organizacija, Volume 38 Scientific Papers Number 9, November 2005

490

1 Introduction

Recent years have seen an increase of research interest in
distributed information systems. The main reason is pro-
bably the fast growth of the best-known distributed infor-
mation system today - the Internet. The possibility of ac-
cessing a multitude of data and processing resources is
also very attractive for simulation purposes, and so the
area of distributed simulation systems is gaining atten-
tion. In the past, simulation was mostly used to develop
stand-alone solutions with a limited scope and lifetime
(Harrell & Hicks, 1998). However, the penetration of
computer simulation into various areas of business pro-
cesses has resulted in the need to connect the simulation
models used in different parts of an organization (Kljaji}
et al., 2000). Also, the trend in simulation development
has shifted from purely analytical and optimisation orien-
ted models to integrating simulation models into decision
support tools to be used recurrently.

However, setting up the connections between distri-
buted simulation models and other data sources can be a
demanding task, especially if there are both continuous
and discrete event simulation (DES) models present or if
the models run within dissimilar simulation tools or on
different platforms.There is a clear need for solutions that
would simplify the exchange of data between simulations
and other applications over the communication network.
We have identified the following problems that we would
like to address:

� Lack of a common data format understandable to all
simulation tools, decision support tools, databases,
etc.

� High amount of data exchanged by the components
of a simulation system.

� Security threats in non-private networks.
� Lacking control of remote components.

The demands of distributed simulation are different
than those of conventional simulation. Distributed simu-
lation is deployed on a broader scale and relies heavily on
shared data. The developers focus is shifting from the "all
in one" simulation environments with integrated graphi-
cal model building, animation and analyses tools towards
"barebone" simulation engines with comprehensive ap-
plication programming interfaces (API). Models can be
embedded as a component of the distributed simulation
systems and dynamically built by procedures using data-
bases. However, due to less flexibility and user interaction
in model building and use, embedded and dynamically
built models are only appropriate for specific problem do-
mains. One of the recent developments in the area of di-
stributed simulation is web-based simulation. But its
weaknesses are the lack of interoperability with conven-
tional simulation tools, difficult handling and a lack of real
advantages over more conventional methods of building
distributed simulation systems (Kuljis & Paul 2001). HLA
(High Level Architecture) is a well-publicised framework
for the construction of distributed simulation systems
(Dahmann et al. 1998). The main force behind the deve-
lopment of HLA is the US Department of Defense, thus

Bla` Rodi~, Miroljub Kljaji}

Faculty of Organisational Sciences, University of Maribor, Kidri~eva cesta 55, 4000 Kranj, Slovenia
blaz.rodic@fov.uni-mb.si

Podpora distribuirani simulaciji z mobilnimi agenti in XML

V ~lanku je predstavljena uporaba programskih agentov in XML za povezovanje simulacijskih modelov in podatkovnih virov
preko komunikacijskega omre`ja. Razviti in preizkušeni sta dve vrsti programskih agentov: mobilni agent, ki deluje kot mobil-
ni stre`nik za izvajanje poizvedb v SQL (Structured Query Language) in pretvorbo rezultatov v XML (eXtensible Markup
Language) format in stacionarni agent, ki deluje kot odjemalec za posredovanje poizvedb in pretvorbo podatkov iz XML for-
mata v CSV (Comma Separated Values) datoteke. V raziskavi smo ugotovili, da je s programskimi agenti mo`no povezati
razli~ne geografsko lo~ene simulacijske modele in podatkovne baze in tako izboljšati povezljivost in uporabnost razli~nih sim-
ulacijskih modelov v distribuiranih informacijskih sistemih.

Klju~ne besede: programski agenti, Java, XML, middleware, distribuirana simulacija

Mobile Agents and XML for Distributed
Simulation Support

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

491

the development of HLA is closely tailored to the needs
of military simulation (Carson 2000). HLA is very highly
specified and standardized (IEEE Standard 1516); howe-
ver it’s also too complex for general use. Complex specifi-
cations mean difficult development of models and nearly
impossible integration of non-HLA simulations (Szyman-
ski & Chen 2000).Another problem is the large consump-
tion of bandwidth due to system overhead (Wayne & Ge-
rald 1999). The CORBA architecture (Common Object
Request Broker Architecture) (Buss & Jackson 1998,
OMG 2005) is similar to HLA, but more general in its
scope. Its aim is the interoperability of distributed sys-
tems, however it is difficult to use with legacy applications
that do not implement it and suffers from similar comple-
xity problems as the HLA.

Mobile agents are a technology that has gained a lot
of attention recently. One of the more popular uses for
mobile agents is in the development of distributed sys-
tems (White 1996). Agents can reduce network traffic, en-
capsulate protocols, execute asynchronously and autono-
mously, adapt to their environment and can be used to
build robust, failure resistant systems (Lange & Oshima
1999). The term “software agents” comes from the field of
artificial intelligence, and in its broadest sense means an
entity that engages in an activity in the name of another
entity - either a human being or another piece of softwa-
re. In the software community the term has come to stand
for programmes that have a certain degree of intelligence
and adaptability, being able to operate without constant
supervision or reducing the necessary user input (e.g. se-
tup wizards). Mobile agents add another degree of auto-
nomy - the ability to move between computer systems.
Naturally, this requires an infrastructure that allows for
transfer and execution of code.

We have examined a number of articles in journals
describing systems utilizing mobile agents in distributed
simulations. A system described by Corbin (1998) utilizes
agents to connect military simulation models and allows
for remote control of the agents via Java applets in web
browsers.The agents use a proprietary method for control
and exchange of data, while no mention is made of secu-
rity mechanisms. Szymanski and Chen (2000) have used
the IBM Aglets toolkit to connect two simulations run-
ning on very different platforms. Their goal was to impro-
ve the usability of component based simulation models of
complex systems. The authors compared the execution
time of models running within the same shared memory
space with a distributed system, where the models were
linked over LAN and TCP/IP. They established that the
additional networking overhead slowed down the simula-
tion to a quarter of the shared memory system speed.
Their conclusion is that the communication link between
distributed simulation models is a serious potential bott-
leneck and effective distribution of components and im-
plementation of data filtering is crucial to distributed si-
mulation system performance. Another interesting exam-
ple is the ABELS system (Mills-Tettey et al. 2002), which
is based on stationary software agents and a broker appli-
cation that is to allow the connection of various simula-

tion models and other applications into the simulation
system. According to available publications the ABELS
system is still under development and lacks several neces-
sary components, including the security mechanisms. Con-
versely, security is the main focus of research by Chunlin
and Layuan (2003). The authors have identified mobile
agents as a threat to the security of local resources and
propose the construction of a distributed system, that
would limit access to the resources to communication
with available “service agents”. The focus of another re-
search (Qi et. al. 2001) is the use of mobile agents for in-
tegration and filtering of data in a distributed sensor net-
work. While the traditional approach would gather all
available data at a central location, here the agents move
from sensor to sensor and locally filter relevant data, re-
ducing the data flow by up to 90%. Jen-Yen and Shih-Wei
(2003) describe a system for the connection of different
multi-agent systems (MAS). They propose an “Agent Ga-
teway” to act as a MAS protocol converter. As the imple-
mentation of an ACL translator for every pair of different
ACL’s would be uneconomic, the authors propose the
construction of an intermediary ACL, based on XML.
With this approach, each new ACL would necessitate the
development of just two translators - ACL to interme-
diary ACL and vice versa.

We feel that despite the wealth of research, there is
still a need for a lightweight tool that would facilitate the
connection of simulation models and data resources over
the Internet and provide filtering as well as security. We
undertook the construction of a flexible, agent based
middleware tool that would allow us to transfer and con-
vert structured data (twodimensional tables) with local
filtering, a secure (encrypted) transfer and mobile agent
authentication. We decided to develop the software in
Java to provide cross-platform mobility and to use stan-
dard internet security mechanisms. As there are a number
of agent development platforms already available, we
tried to find a platform that would provide built-in sup-
port for important functionalities such as transport, con-
trol and secure communications between distributed
components. We have looked at several platforms, inclu-
ding Aglets, Odyssey, Voyager and Grasshopper (Mangi-
na 2002), and decided to utilize the Grasshopper V2.2.4
platform by IKV++ (IKV++ 2003). We have also decided
to implement data format translation using basic XML
tables as an intermediary format. In contrast with heavy-
weight solutions such as the HLA or CORBA we decided
not to provide explicit support for runtime interface con-
nections, registration and search and synchronization of
events. Instead we are aiming for a low cost solution that
would connect the simulations at the data resource level,
and not at the runtime level. Other advantages of our pro-
posed solution over the existing methods are to include
shorter and simpler connection setup procedures, an
open-ended structure and the use of security mechanisms
with a relatively small impact on adaptability and perfor-
mance of the system.

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

492

2 Methodology

We have used the Grasshopper V2.2.4 agent development
platform by IKV++ (IKV++ 2003) to develop the softwa-
re agents for distributed simulation support. The Grass-
hopper platform was chosen as it is entirely built in Java
and compatible with most computer platforms, because
the source code is open and well documented, because of
the good implementation of transport, control and secu-
rity mechanisms, excellent documentation and a free aca-
demic license. The central part of the Grasshopper plat-

form is a distributed processing system, which integrates
the conventional client/server architecture and the soft-
ware agents’ technology. The Grasshopper system is im-
plemented in Java, version 2 and is one of the first agent
platforms to implement MAS interoperability standards
such as MASIF (Mobile Agent System Interoperability
Facility) (OMG 2005) and FIPA (Foundation for Intelli-
gent Physical Agents) (FIPA 2004).

The Grasshopper platform builds on the concepts of
region, place, agency and several types of agents (Figure
1).

An agency is an instance of the Grasshopper applica-
tion that hosts software agents and provides services such
as communications, registration, data transfer, security,
transport and archiving. Every computer that we want to
connect to a distributed multiagent system should be run-
ning at least one agency. Every agency contains the so-cal-
led core agency and several places where the agents can
run.Agencies handle virtually all services related to the li-
fetime of agents.The concept of place aids the grouping of
agents inside agencies according to their purpose or func-
tionalities. Every agency has to contain at least one place
on order to host agents. In contrast, the formation of re-
gions is not mandatory, and serves only to simplify the
communications between components of a distributed
system. A region registry keeps track of all agencies and
agents within the region and enables communication with
mobile agents regardless of their location. The informa-
tion on agent states and events is reported to the registry
by concerned agencies.

2.1 Prototype system

To test the software agents we needed to develop a distri-
buted system prototype. We have decided to use agents to

connect two different simulation models via their data re-
sources. The prototype application used simulation mo-
dels derived from the models used in a production process
reengineering project (Kljaji} et al. 2000). In that project
we have constructed several simulation models: a continu-
ous simulation model for the financial analysis of invest-
ments and several DES models to represent the produc-
tion line reengineering alternatives. In the prototype we
gave the continuous simulation model running in Power-
sim Studio 2003 (Powersim AS 2004) the role of a data
source, while a discrete event simulation model running in
ProModel (ProModel Corporation 2002) had the role of a
data consumer. Powersim and ProModel are both general
purpose simulation tools and are designed for the Micro-
soft Windows operating system.

Powersim and ProModel cannot be directly connec-
ted, as they don't share a common data interface or data
format. The only runtime data transfer option in Power-
sim is the Windows DDE (dynamic data exchange) link to
MS Excel files, while the only easily accessible runtime
data transfer option runtime data transfer option in Pro-
Model is via text files, for example CSV (comma separa-
ted values) files. Therefore the only viable method of con-
necting Powersim and ProModel is to transfer the data
from MS Excel workbooks to text-based CSV (comma se-

MOBILE AGENTS

���
STATIONARY AGENTS

����

PLACE

AGENCY

CORE AGENCY

REGION

REGION
REGISTRY

SERVICES:
management
communications
transport
...

Figure 1: Structure of a Grasshopper based agent system

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

493

parated values) files. While it is possible to save data from
MS Excel as CSV files, it is difficult to do remotely. Also,
directly translating an MS Excel workbook into a CSV
file or files would result in a large amount of poorly struc-
tured data that would be very difficult to use in ProMo-
del, therefore data filtering is required. We have also de-
cided to implement data format translation using an inter-
mediary format based on XML to facilitate the addition
of new data formats. Intermediary XML data is in the
form of an XML table.

We have divided the distributed system into several
components:

� Simulations,
� Data resources and
� Middleware.

The function of middleware is implemented by a mul-
tiagent system containing the following components:
� Mobile agents,
� Stationary agents,
� Agent execution platforms (agencies),
� Central registry and control application (region regi-

stry).
The prototype of a distributed system contains three

computers that host individual components of the system

(Figure 2). The envisaged scenario has the user of “Com-
puter 1” trying to obtain simulation data from “Computer
2” that is acting as a data source. “Computer 3” has the
role of central registry and administration server. The
“Computer 1” runs the DES model contains the file used
for data transfer (from continuous model to DES model)
and an agency hosting a stationary and a mobile agent.
The stationary agent is used to forward user queries to the
mobile agent and then receive and convert the resulting
data from the intermediate XML format to a CSV file.
The mobile agent is used to fetch the data according to
the user query (applying filtering), convert the data to in-
termediary XML format and send it to the querying sta-
tionary agent. The computer running the continuous si-
mulation model (Computer 2) also contains an MS Excel
file used to save and access simulation results and an
agency that hosts the mobile agent. Finally, the computer
marked “Computer 3” holds the region registry, which is
used to control and administrate the agents and agencies.
Figure 2 also displays the connections between compo-
nents, where continuous lines show communication links,
while the dashed line shows the path of mobile agent mi-

gration.The agencies are Java applications, running within
local instances of Java VM (Java Virtual Machine). It is
possible to run several agencies on the same computer,
and several agents within every agency. Every agent runs
in its separate thread, making the parallel execution of se-
veral agents possible without special mechanisms. Every
agency implements the following services:
� Creation, execution and removal of agents,
� Reception and execution of mobile agents,
� Control of active agents within the agency,
� Access to information on agents within the agency,
� Access to network and local resources,
� Registration of agents and the agency with the region

registry,
� Inter-agent communications, and
� Security mechanisms for communications and agent

transport.
The role of the region registry is to enable a centrali-

zed overview and control of components in a distributed
agent system, i.e. agencies and stationary and mobile
agents. The region registry implements the following ser-
vices:

COMPUTER 1

Agent platform

(agency)

COMPUTER 2

Agent platform (agency)

mobile agent

COMPUTER 3

 Central registry
(region registry)

DATA
RESOURCES:
databases, files

stationary agent DATA
RESOURCES:
databases, files

mobile agent

SIMULATION
Data source

SIMULATION
Data consumer

registration

registration transport

query and
results

data access

Figure 2: Distributed system prototype schematics

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

494

� Registration of agencies and agents,
� Overview of agent locations,
� Overview of agency and agent properties,
� Removal of agencies and agents from the registry,
� Use of security mechanisms for all communications.

A mobile agent is an executable piece of Java code
that can run within an agency and implements the follo-
wing functionalities and services:
� Migration to the data source,
� Accepting user queries (via the stationary agent),
� Retrieval of data according to the user query (filte-

ring),
� Conversion from original (MS Excel) format to inter-

mediary (XML table) format,
� Transfer of data to the querying stationary agent
� Remote control of life-cycle and
� Use of security mechanisms for communications.

A mobile agent’s life cycle (Figure 3) is started by a
user that would like to access data on a remote computer
that hosts a data source and can accept mobile agents.The
initial state (“Awaiting activation”) is marked bold. The
agent can be started in any agency that is registered with
the region registry. Initially, the agent is a passive object
(not executing), and has to be activated (with a double-
click or via agency GUI). Then the agent initializes itself
and asks (via a graphical user interface) what agency the
user wants to send it to and what data source it should ac-
cess there. The user doesn’t need to know the exact loca-
tion of the agency such as the computer name or its IP ad-

dress, as it is transparently provided by the region registry.
The agent then creates a copy of itself and deactivates, be-
coming a passive object again. This is done to enable the
remote control of agent’s life cycle - after the user re-
quests the removal of the original agent, the original
sends its copy the pass phrase that was randomly genera-
ted at the agent’s activation (a “shared secret”), and the
remote copy stops executing at the first opportunity and
removes itself. The copy moves to the target agency, using
an encrypted protocol. The transport is performed by the
agencies, moving both the execution code and the data
(variables). The target agency accepts the mobile agent,
provided that it is signed by a known and approved entity.
This is done with standard SSL mechanisms and X.509
signatures, i.e. the agent creator’s digital signature must be
present in the target agency’s signature storage. When the
mobile agent is allowed to execute in the target agency, it
assumes the role of a server and waits for incoming re-
quests. The requests have to include an SQL query and
the aforementioned pass phrase to prevent unauthorized
data access. The mobile server agent can be removed eit-
her remotely by its owner or locally by the owner of the
hosting agency. The region registry administrator can de-
lete the agent (in fact any agent or agency) from the regi-
stry, thus making it inaccessible to other agents or agen-
cies, but cannot physically remove or deactivate the agent.
The xlSQL JDBC driver (NiLOSTEP 2004) was used to
access data in MS Excel workbooks.

Awaiting
activation Copy

creation

Remote
control

Awaiting a
query

Executing
the query

parameter entry

Copy transport

deactivation

Query
received

Query
results

returned

Copy

Original

Copy

Figure 3: State transition diagram of the mobile agent

The stationary agent has the role of a intermediary
between a mobile agent and the data consumer (a user or
an application). The stationary agent’s functionalities and
services are:
� Accepting data queries,
� Forwarding a query to a mobile agent,

� Reception of results and their conversion from XML
format to a CSV file, and

� Use of security mechanisms for communications.
Figure 4 shows the life-cycle of the stationary agent.

The agent is started by a user that needs access to remote
data.The agent is activated during its initialization and as-

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

495

sumes the state “Awaiting query” (marked bold in Figure
4). The agent then displays a GUI dialogue requesting the
remote mobile agent address, pass phrase, the SQL query
and the destination file.The stationary agent can be remo-
ved by its creator or the administrator of the hosting
agency. The region registry administrator can delete the
agent from the registry, thus making it inaccessible to ot-
her agents or agencies, but cannot physically remove or
deactivate the agent.

3 Results

With the prototype we have managed to build a system
that allows us to access a remote data resource, fetch a de-
fined range of data and convert it into the desired format.
The software agent based system masks many operations
that are necessary to fetch the desired range of data from
a remote location and convert it into desired format, and

can be seen from the end-user’s point of view as a “black
box” (Figure 5) that accepts SQL queries and returns
CSV format data.

We have tested the operation of the prototype using
different sizes of the query results and both with and wit-
hout security mechanisms. Before the testing took place,
we have checked the operation of individual computers
and their components: central processor units, hard drives
and network adapters. Hard drive defragmentation was
performed afterwards. All computers were rebooted bet-
ween individual tests and the system page file initialized.
As the prototype was operating on Faculty’s computers
the tests were conducted outside office hours to minimize
undesired network traffic.

We aimed to find out how the system responds to dif-
ferent communication protocols (sockets and SSL) and
data package sizes in order to establish the suitability of
the system for different types of distributed simulation
systems and hardware configurations. We were especially
curious as to what would be the impact of security mecha-
nisms on system performance.

The test environment contained three IBM PC com-
patible network workstations. The region registry was
operating on a DELL Inspiron 8100 laptop with a Pen-
tium 3 mobile CPU running at 1GHz and a 20Gb,
4200RPM hard drive and 512Mb of 133Mhz SDRAM
(COMPUTER 3 on Figure 2). The mobile and stationary
agents were installed on a IBM Thinkpad r50p laptop

Awaiting
query
entry

Awaiting
query
results

Conversion
of results
from XML

to CSV

Query
entry

Query
processing Mobile

agent called

Query results

received

Conversion
complete

MOBILE AGENTS FOR
DISTRIBUTED

SIMULATION SUPPORT

SQL query:

select * from 'table.sheet1'

CSV file:

Table.csv :
1.0,720,
2.0,642,
3.0,545,
4.0,419,
...

Figure 4: State transition diagram of the stationary agent

Figure 5: The software agents based system from the end-user’s point of view

with a Pentium M mobile CPU running at 1.7GHz and a
60Gb, 7200RPM hard drive and 512Mb of 333Mhz DDR
SDRAM (COMPUTER 1 on Figure 2).The role of remo-
te data source (COMPUTER 2 on Figure 2) was given to
a machine with a Athlon 64 3000+ CPU running at 2GH-
z and a 160Gb, 7200RPM hard drive and 1Gb of 433Mhz
DDR SDRAM. All computers were connected to the lo-
cal area network at the Faculty of Organisational Sciences
via Fast Ethernet (100Mbps) network adapters and
100Mbps switches.

We have measured the following parameters:
� Time needed for the transfer of a mobile agent bet-

ween two agencies, depending on the communication
protocol and sequence of transfer,

� Time needed to establish the connection between xl-
SQL JDBC driver and the data source (MS Excel
workbook) depending on the MS Excel workbook
size,

� xlSQL JDBC driver’s usage of memory depending on
MS Excel workbook size,

� Time needed for xlSQL to return a data range depen-
ding on the query result (data range) size,

� Time needed for the conversion of a returned data
range to XML data depending on the query result
(cell range) size,

� Time needed for the conversion of received XML
data to a CSV file depending on the query result (cell
range) size,

� Time needed for the completion of a SQL query
(from the entry of query to the writing of a CSV file)
depending on the query result (cell range) size.
The MS Excel workbook contained a table with three

columns, containing the record index, decimal value and
the time of record creation. We have used tables that ran-
ged in size from 100 to 65.500 rows (maximum supported
size in the MS Excel in MS Office 2000). The stationary
agent used an SQL query that returned a range of cells at
a randomly selected position in the table. The queries
were one hundred times to provide better accuracy of re-
sults. An example of a query that returned one hundred
records is as follows:

select idx,val from 'table.sheet1' where idx>100 and
idx<201

An individual record returned contained two pieces
of data: the record index (64 bits) and record value (64
bits). The Y7 version of the xlSQL JDBC driver was used.
The times were measured using the system clock in the
Java Virtual Machine.

In the following part of the paper we present some of
the more interesting results of prototype testing. The re-
sults of all tests are available in the doctoral thesis (Rodi~
2004). Figure 10 shows the dependence of system perfor-
mance on the size of cell range that a query returns. The
performance is expressed as throughput - the average
number of records processed per second. We have measu-
red the performance at the client agent side by measuring
the duration of processing from the entry of an SQL
query to the writing of a CSV file.The processing includes
the transfer of the SQL query to the mobile agent acting

as a server, querying using the JDBC driver, conversion of
the resulting data range to XML, sending XML back to
the client agent and conversion to a CSV file. We have es-
tablished that the system performance is proportional to
the query result size and grows in a logarithmic fashion,
and that the use of secure mechanisms for communica-
tions reduced the system performance by approximately
20 percent.

Figure 7 shows the average duration of tasks of the
mobile server agent, i.e. the execution of the received
SQL query and the conversion of the resulting data range
into an XML table. The accuracy of results was limited
due to the limited resolution of the system clock (10 ms).
It is evident that the duration of SQL queries is not seri-
ously affected by the query result size; however the dura-
tion of conversion of the data set to XML seems to be li-
nearly dependent on the size of query results. The query
response time or latency of the mobile agent is limited by
the duration of SQL query using the xlSQL JDBC driver,
which was at least 60 ms during our tests.

Our results show that the system performance is af-
fected by both query result size and the use of security
mechanisms, as we have expected. The system throughput
was highest when the size of query results was several
thousand rows. The latency of the mobile server agent is
affected by the duration of SQL query. The minimal la-
tency we have achieved with the mobile agent during our
test was in the order of 60 ms and the smallest total time
of service (SQL query to CSV file) achieved was approxi-
mately 100 ms, which translates to about 10 transactions
per second.That speed is unsatisfactory for a real-time ap-
plication of the system but may be adequate for decision
support systems.

The highest achieved throughput is approximately
eight thousand records per second, where each record
contained two numbers in the double format (double ac-
curacy floating point number) with the size of 64 bits
each. This speed is in our opinion adequate to link busi-
ness simulation models and other applications, but not ap-
propriate to conduct real-time data transfer between
complex natural science simulation models or applica-

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

496

System performance (SQL query to CSV file)

0

2.000

4.000

6.000

8.000

10.000

0 1000 2000 3000 4000 5000 6000

Query result size [rows]

pe
rf

or
m

an
ce

 [r
ow

s/
se

co
nd

]
Plain Sockets Secure Sockets (SSL)

Figure 6: System performance depending on the query result
size

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

497

tions with intensive communication between components.
That can be expected as Java applications still tend to be
relatively slow compared to compiled native applications.
Also, MS Excel workbooks are not intended for the stora-
ge of large amounts of data and cannot compete with re-
lational databases for speed of access. Given these limita-
tions, we conclude that the achieved throughput is satis-
factory.

The use of security mechanisms in data transfer has a
notable negative effect on the system performance due to
increased communication setup and data transfer over-
head of secure protocols. Establishing a connection using
SSL has several additional steps compared to plain Soc-
kets, and some of these steps are computationally intensi-
ve (encryption and key generation). SSL also requires
some additional resources on the computer (key storage).
As all transferred data is encrypted using strong encryp-
tion, the overhead is significant during the entire commu-
nication. Our tests show that the use of security mecha-
nisms slows the system performance down by 20 to 25
percent.We believe that although significant, the security-
performance trade-off is acceptable as the use of SSL ma-
kes the system considerably more resistant to eaves-drop-
ping, impersonation, unauthorized modification of data
and “rogue” (malicious) agents.

4 Conclusion

The results of our research show that software agents can
be used to connect distributed simulation models, develo-
ped with different general purpose simulation tools and
databases, thus improving the connectivity and usability
of simulation models in distributed information systems.

The use of standard security mechanisms provide authen-
tication, confidentiality and integrity of information and
contribute to the safety of the entire distributed system
without a major negative impact on system performance.

We have developed two types of agents: a mobile
agent that functions as a mobile server for on-demand
queries in SQL and transformation of results into XML
compliant documents and a stationary agent functioning
as a client for query forwarding and conversion of resul-
ting XML documents into CSV files.The mobile agent im-
plements the methods for migration between agencies, re-
mote control, accepting and processing of queries from
remote client agents and conversion of query results to in-
termediary XML format (a two-dimensional table). The
stationary agent acting as a client implements the met-
hods for connecting to a mobile server agent, query for-
warding and conversion of results from the XML format
to CSV files. The use of an intermediary XML format for
data conversion facilitates the addition of new data for-
mats and integration with modern business information
systems. By using an intermediary format we only need to
develop two converters for every new data format, i.e.
converters for conversion between different data for-
mats. Without an intermediary format, converters are ne-
cessary. The use of Java, XML and a well documented
agent platform facilitated the development of an open en-
ded and expandable system. The use of XML also facilita-
tes data processing, as XML documents can be converted
to Java software objects and then modified and processed
with Java code. We have used this feature to convert the
XML documents to a text string and write it into a CSV
file.

While the server side of the system (the computer ho-
sting the data resource and mobile server agents) has to

Average duration of tasks of the mobile (server) agent

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000

Query result size [rows]

tim
e

[m
s]

Average duration of SQL query Average duration of conversion of results to XML

Figure 7: Average duration of tasks of the mobile agent

provide an agent platform and an appropriate JDBC dri-
ver to access data, the client side needs only the agent
platform for full functionality. Therefore any computer
that can run the Grasshopper agent platform (therefore
most systems that support Java) can be used to easily ac-
cess remote MS Excel data with simple yet powerful SQL
queries. This significantly facilitates the integration of dif-
ferent simulation models and applications from various
platforms into a distributed information system.

Acknowledgments

The research was financially supported by the Slovene
Ministry of education, science and sports within the “De-
cision Systems in a Global e-Economy” programme, code:
PP-0586-501 and the Young Researcher programme.

Literature
Buss, A. & Jackson, L. (1998). Distributed simulation modelling:

A comparison of HLA, CORBA, and RMI, Proceedings of
Multi-agent systems and agent based simulation: first inter-
national workshop MABS '98 (Sichman, J.S., Conte, R. &
Gilbert, N., Editors), Paris July 2nd-8th 1998, pp. 819-825,
Springer, Berlin Heidelberg.

Carson, J. (2000). Simulation in the future, panel discussion, Pro-
ceedings of the 2000 Winter simulation conference (Joines,
J.A., Barton, R.R., Kang, K., & Fishwick, P.A., Editors), Or-
lando December 10th-13th 2000, pp. 1568-1576, IEEE, Pis-
cataway.

Chunlin, L. & Layuan, L. (2003). Combine concept of agent and
service to build distributed object-oriented system, Future
Generation Computer Systems, 19(2), pp. 161-171.

Corbin, M. (1998). Applications of mobile agents and ambassa-
dors in distributed simulation, Simulation Practice and
Theory, 6(6), pp. 505-532.

Dahmann, J.S., Fujimoto, R.M. & Weatherly, R.M. (1998). Simu-
lation software component architecture for simulation-ba-
sed enterprise applications, Proceedings of the 1998 Winter
simulation conference (Medeiros, D.J., Watson, E.F.,
Carson, J.S., & Manivannan, M.S., Editors), Washington
D.C. 13th-16th December 1998, pp. 797-804, IEEE, Piscata-
way.

Davis, W. J. & Moeller, G. L. (1999). The high level architecture:
is there a better way?, Proceedings of the 1999 Winter simu-
lation conference (Farrington, P.A., Nembhard, H.B., Stur-
rock, D.T., & Evans, G.W., Editors), Squaw Peak 5th-8th
December 1999, pp. 1595-1601, IEEE, Piscataway.

FIPA (2004). http://www.fipa.org, (Accessed 01.09.2004).
Harrell, C.R. & Hicks, D. (1998). Simulation software compo-

nent architecture for simulation-based enterprise applica-
tions, Proceedings of the 1998 Winter simulation conference,
(Medeiros, D.J., Watson, E.F., Carson, J.S., & Manivannan,
M.S., Editors), Washington D.C. 13th-16th December 1998,
pp. 1717-1721, IEEE, Piscataway.

IKV++ (2004). http://www.grasshopper.de, (Accessed 20.10.2004).
Jen-Yen, C.J. & Shih-Wei, S. (2003). AgentGateway: a communi-

cation tool for multi-agent systems, Information Sciences -
Informatics and Computer Science: An International Jour-
nal, 150(3-4), pp. 153-164.

Kljaji}, M., Bernik, I. & Škraba, A. (2000). Simulation Approach
to Decision Assessment in Enterprises, Simulation, 75(4),
pp. 199-210.

Kuljis, J. & Paul, R.J. (2001). An appraisal of web-based simula-
tion: whither we wander?, Simulation Practice and Theory,
9(1-2), pp. 37-54.

Lange, D.B. & Oshima, M. (1999). Seven good reasons for mobi-
le agents, Communications of ACM, 42(3), pp. 88-89.

Mangina, E. (2002). The 'draft' review of software products for
multi-agent systems, Report for the European Network of
Excellence for Agent Based Computing, Applied Intelli-
gence (UK) Ltd., Kenstone, Available from http://www.age-
ntlink.org/admin/docs/2002/2002-47.pdf (15.09.2004).

Mills-Tettey, G.A., Johnston, G., Wilson, L. F., Kimpel, J.M. &
Xie, B. (2002).The ABELS System: Designing An Adaptab-
le Interface For Linking Simulations, Proceedings of the
2002 Winter simulation conference (Yucesan, E., Chen, C.H.,
Snowdon, J. L., & Charnes, J. M., Editors), San Diego 8th-
11th December 2002, pp. 832-840, IEEE, Piscataway.

NiLOSTEP Information Sciences (2004). http://nilostep.com,
(Accessed 20.10.2004).

OMG (2005). http://www.omg.org, (Accessed 01.09.2005).
Powersim Software AS (2004). http://www.powersim.com, (Ac-

cessed 10.03.2004).
ProModel Corporation (2002). http://www.promodel.com, (Ac-

cessed 16.02.2002).
Qi, H., Iyengar, S. & Chakrabarty, K. (2001). Distributed multi-

resolution data integration using mobile agents, IEEE Ae-
rospace Conference Proceedings. Vol. 3, (Robert, P.W., Edi-
tor), Big Sky 10th-17th March 2001, pp. 1133-1143, IEEE
Service Center, Piscataway.

Rodi~, B. (2004). Distributed simulation support using mobile
agents and XML, Doctoral Dissertation, University of Ma-
ribor, Faculty of Organisational Sciences.

Szymanski, B.K. & Chen, G. (2000). Linking spatially explicit pa-
rallel continuous and discrete models, Proceedings of the
2000 Winter simulation conference (Joines, J.A., Barton,
R.R., Kang, K., & Fishwick, P.A., Editors), Orlando Decem-
ber 10th-13th 2000, pp. 1705-1712, IEEE, Piscataway.

White, J. (1996). Telescript technology: mobile agents, General
Magic white paper, Software Agents, MIT Press.

Bla` Rodi~ received his B.Sc. degree in electronics and te-
lecommunications engineering from the University of Ljub-
ljana, Faculty of Electrical Engineering in 1996 and the
M.Sc. and Sc.D. degree in information systems manage-
ment from the University of Maribor, Faculty of Organizatio-
nal Sciences in 2002 and 2004, respectively. Currently he is
working as a senior researcher at the Faculty of Organiza-
tional Sciences. His research interests include distributed si-
mulation and application of artificial intelligence methods in
simulation models.

Miroljub Kljaji} - rec biography on page 518.

Organizacija, Volume 38 Scientific Papers Number 9, November 2005

498

