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There is a growing trend of information sharing within modern supply chains. This trend is mainly stimulated by recent deve-
lopments in information technology and the increasing awareness that accurate and timely information helps firms cope with 
volatile and uncertain business conditions. We model a periodic-review, single-item, capacitated stochastic inventory system, 
where a supply chain member has the ability to obtain advance capacity information (‘ACI’) about future supply capacity 
availability. ACI is used to reduce the uncertainty of future supply and thus enables the decision-maker to make better orde-
ring decisions. We develop an easily applicable heuristic based on insights gained from an analysis of the optimal policy. In 
a numerical study we quantify the benefits of ACI and compare the performance of the proposed heuristic with the optimal 
performance. We illustrate the conditions in which the procedure is working well and comment on its practical applicability.
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Heuristic Approach to Inventory Control 
with Advance Capacity Information

1 Introduction

In a realistic supply chain setting a common modeling 
assumption of sure deliveries of an exact quantity ordered 
may not be appropriate. Several factors in a production/inven-
tory environment, such as variations in the workforce level 
(e.g. due to holiday leave), unexpected machine breakdowns 
and maintenance, changing the supplier’s capacity allocation 
to their customers etc., affect the available supply capacity 
and correspondingly cause uncertainty in the supply process. 
Anticipating possible future supply shortages allows a deci-
sion-maker to make timely ordering decisions which result in 
either building up stock to prevent future stockouts or reducing 
the stock when future supply conditions might be favorable. 
Thus, system costs can be reduced by carrying less safety 
stock while still achieving the same level of performance. 
These benefits should encourage the supply chain parties to 
formalize their cooperation to enable the requisite information 
exchange by either implementing necessary information shar-
ing concepts like the Electronic Data Interchange (‘EDI’) and 
Enterprise Resource Planning (‘ERP’) or using formal sup-
ply contracts. We may argue that extra information is always 
beneficial, but further thought has to be put into investigating 
in which situations the benefits of information exchange are 
substantial and when it is only marginally useful.

In this paper, we explore the benefits of using available 
advance capacity information (‘ACI’) about future uncertain 
supply capacity to improve inventory control mechanisms 
and reduce relevant inventory costs. The assumption is that 
a supplier has some insight into near future supply capacity 

variations (the extent of the capacity that they can delegate to 
a particular retailer for instance), while for more distant future 
periods the capacity dynamics are uncertain. Thus, the sup-
plier can communicate this information to the retailer and help 
the retailer reduce supply uncertainty (Figure 1). However, 
the simultaneous treatment of demand uncertainty and supply 
uncertainty proves to be too complex to establish simple and 
easily applicable inventory control policies. Bush and Cooper 
(1998) and Buxey (1993) indicate that firms facing these con-
ditions tend to have no formal planning mechanism. 

Figure 1: Supply chain with ACI sharing.

The aim of this paper is to build a practical and reason-
ably accurate heuristic procedure that captures the important 
problem characteristics mentioned. The heuristic is developed 
based on insights gained from a study of the optimal policy 
behavior by Jakšič et al. (2008). They show that the optimal 
ordering policy is a base stock policy characterized by a 
single base stock level, which is a function of deterministic 
ACI that is available for a limited number of future periods. 
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However, they stress that the complexity of the underlying 
optimal dynamic programming procedure prevents an analysis 
of real-life situations. This problem will be addressed in this 
paper by considering an approximate approach to determine 
the parameters of the inventory policy.

We now briefly review the relevant research literature. 
The practical importance of the effect of limited capacity has 
generated considerable interest in the research community. 
Extending the results of the classical uncapacitated inventory 
control, the capacitated manufacturing/supply setting was first 
addressed by Federgruen and Zipkin (1986). They proved the 
optimality of the modified base stock policy for a fixed capac-
ity constraint and stationary demand. Kapuscinski and Tayur 
(1998) assume stochastic seasonal demand where they again 
show the optimality of a modified base-stock policy. The antic-
ipation of future demand, due to its periodic nature, causes a 
corresponding increase or decrease in the base stock level. A 
line of research assumes stochastic capacity (Ciarralo et al., 
1994; Güllü et al., 1999; Iida, 2002), within which Ciarralo 
et al. (1994) show that the optimal policy remains a base 
stock policy where the optimal base stock level is increased 
to account for possible capacity shortfalls in future periods. 
They extend this work by introducing the notion of extended 
myopic policies and show these policies are optimal if the 
decision-maker considers appropriately defined review peri-
ods. The optimality or near-optimality of myopic policies in a 
non-stationary demand environment was explored by Morton 
and Pentico (1995) and later extended with the inclusion of 
fixed or stochastic capacity by Bollapragada et al. (2004), 
Khang and Fujiwara (2000), and Metters (1998). Metters 
(1997) presents a heuristic constructed utilizing an analytical 
approximation for optimal policy. In developing heuristics, 
researchers have generally resorted to an approximate analysis 
of the optimal policies and a close inspection of the behavior 
of myopic policies.

The remainder of the paper is organized as follows. 
In Section 2 we present a model incorporating ACI and its 
dynamic programming formulation as the basis for an optimal 
solution. In Section 3 we consider an alternative approach 
to solving the presented inventory problem by developing a 
heuristic procedure. Section 4 provides the results of a numeri-
cal study in which we assess the accuracy of the proposed 
heuristic and outline relevant managerial insights about the 
settings in which it should be applied. Finally, we summarize 
our findings in Section 5.

2 Model formulation

In this section, we describe in detail the ACI model developed 
in Jakšič et al. (2008). We introduce the notation and present 
the optimality equations. The model under consideration 
assumes periodic-review, stochastic demand, stochastic lim-
ited supply with a fixed nonnegative supply lead time, finite 
planning horizon inventory control system. However, the 
manager is able to obtain ACI on the available supply capacity 
for orders placed in the future and use it to make better order-
ing decisions. We introduce parameter n , which represents 
the length of the ACI horizon, that is, how far in advance the 
available supply capacity information is revealed. We assume 

ACI t nz+
+  is revealed in each period t  for the supply capac-

ity that will be realized in period t n+ . The model assumes 
perfect ACI, meaning that we know the exact upper limit on 
supply capacities limiting orders placed in the current and fol-
lowing n  periods.

Presuming that unmet demand is fully backlogged, the 
goal is to find an optimal policy that minimizes the relevant 
costs, that is inventory holding costs and backorder costs.  
Hence, we assume a zero fixed cost inventory system. The 
model presented is quite general in the sense we do not make 
any assumptions about the nature of the demand and supply 
process, with both being assumed to be stochastic non-station-
ary and with known distributions in each time period, however, 
independent from period to period. The major notation is sum-
marized in Table 1 and some other notation is introduced later 
as required.

Table 1: Summary of notation 

T  :  number of periods in the planning horizon 

L  :  constant nonnegative supply lead time, 

  where = 0L , for “zero lead time” case 

n  :  advance supply information parameter, 0n ≥  

h  :  inventory holding cost per unit per period 

b  :  backorder cost per unit per period 

tx  :  inventory position at time t  before ordering 

ty  :  inventory position at time t  after ordering 

ˆtx  :  net inventory at the beginning of period t
tz  :  order size at time t  

tc  :  lack of capacity in period t  

ta  :  anticipatory stock required in period t  

tD :  random demand in period t  

td  :  actual demand in period t  

tZ + :  random available supply capacity at time t  

tz+ :  actual available supply capacity at time t , for which 

ACI was revealed at time t n−

We assume the following sequence of events. (1) At the 
start of the period t , the manager reviews tx  and ACI t nz+

+  
for supply capacity in period t n+  is received, limiting order 

t nz +  (Figure 2). (2) The ordering decision tz  is made and cor-
respondingly the inventory position is raised to =t t ty x z+
. (3) The quantity ordered in period t L−  is received. (4) 
At the end of the period demand td  is observed and satis-
fied through on-hand inventory; otherwise it is backordered. 
Inventory holding/backorder costs are incurred based on the 
end-of-period net inventory.

Due to positive supply lead time, each order remains in 
the pipeline stock for L  periods. We can therefore express the 
inventory position before ordering tx  as the sum of the net 
inventory and pipeline stock.

1

=

ˆ= .
t

t t s
s t L

x x z
−

−

+ ∑        (1)
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Correspondingly, the inventory position after ordering is 

= ,t t ty x z+          (2)

where 0 t tz z+≤ ≤ , where tz+ represents the upper 

bound on the realization of the order tz  that will be delivered 

L  periods later in period t L+ . Note, that due to perfect 

ACI, the inventory position ty  reflects the actual quantities 

that will be delivered at all times. Apart from tx  and the 

current supply capacity tz+, we need to keep track of ACI, 

1 2= [ , , , ]t t t t nz z z z+ + + +
+ + +



 . The ACI vector consists of avail-

able supply capacities potentially limiting the size of orders 

in future n  periods. The state space is thus represented by a 

2n +  -dimensional vector and is updated at the end of period 

t  in the following manner

1

1 2 1

= ,

= [ , , , ].
t t t t

t t t n t n

x x z d
z z z z

+

+ + + +
+ + + + +

+ −




     (3)

Going from period t  to period 1t + , order tz is placed 

according to the available supply capacity tz+ and demand in 

period t  is realized. Before a new order is placed in period 

1t + , ACI 1t nz+
+ +  for the order that will be placed in period 

1t n+ +  is revealed and the oldest data point tz+ is dropped 

out of the ACI vector and ACI is updated by the new informa-

tion t nz+
+ . Observe that in the case of = 0n  the ACI affecting 

the current order is revealed just prior to the moment when the 

order needs to be placed. Due to a constant non-zero lead time 

the decision-maker should protect the system against lead time 

demand, 
=

= t LL
t kk t

D D+

∑ , which is demand realized in time 

interval ( , )t t L+ . Since the current order tz  affects the net 

inventory at time t L+ , and no later order does so, it makes 

sense to reassign the corresponding inventory-backorder cost 

to period t . Thus, the expected inventory-backorder cost 

charged to period t  is based on the net inventory at the end 

of the period t L+ , 1ˆ L
t L t tx y D+ + = − , and we can write it in 

the following form of a single-period expected cost function 

( )t tC y :

ˆ( ) = ( ),L L
t t L t L t tDt

C y E C y Dα + −      (4)

where α  is a discount factor. The expectation 

is with respect to lead time demand L
tD  and the sin-

gle-period cost function takes the following form, 

1 1 1
ˆ ˆ ˆ ˆ( ) = [ ] [ ]t L t L t L t LC x h x b x+ −

+ + + + + + ++ .

The minimal expected cost function, optimizing the cost 

over a finite planning horizon T  from time t  onward and 

starting in the initial state ( , )t tx z + , can be written as: 

         (5)

where 1( ) 0Tf + ⋅ ≡ . The solution to this dynamic program-
ming formulation minimizes the cost of managing the system 
for a finite horizon problem with T t−  periods remaining 
until termination. It was shown in Jakšič et al. (2008) that the 
optimal policy is the modified base stock policy, characterized 
by a single optimal base stock level ˆ ( )t ty z + , which deter-
mines the optimal level of the inventory position after order-
ing. The optimal base stock level depends on the future supply 
availability, that is supply capacities given by the ACI vector 

tz + . Optimal policy instructs that we raise the base stock level 
if we anticipate a possible shortage in supply capacity in the 
future. We thereby stimulate the inventory build-up to avoid 
possible backorders which would be a probable consequence 
of a capacity shortage. On the contrary, the base stock level 
is decreasing with the higher supply availability revealed by 
ACI. 

3 Construction of the heuristic

However, the computational efforts related to establishing 
the parameters of the optimal policy are cumbersome even 
for simple problem instances. Practical applicability is there-
fore severely restricted. This creates an incentive to develop 
approximate procedures to tackle the problem. In this section 
we present a modification of existing heuristics for a non-
stationary demand, fixed capacity inventory system, known 

Figure 2: Advance capacity information updating.
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as the proportional safety stock heuristic (Metters, 1997). We 
upgrade this heuristic considerably for the case of our ACI 
model by accounting for both the effect of the variable capac-
ity and the proposed ACI setting.

To construct the heuristic it is first useful to define the 
myopic optimal solution to the single-period newsvendor 
problem:

1ˆ = ,M
t t

by
b h

−  Φ  + 
       (6)

where ( )t tdΦ  represents the cumulative distribution 
function of demand in period t . For a single-period problem 
with stochastic limited capacity Ciarallo et al. (1994) show 
that the variable capacity does not affect the order policy. The 
myopic policy of the newsvendor type is optimal, meaning 
that the decision-maker has no incentive to try to produce 
more than is dictated by the demand and the costs, and sim-
ply has to hope that the capacity is sufficient to produce the 
optimal amount. However, in multiple period situations one 
can respond to possible capacity unavailability by building up 
inventories in advance. 

We continue by constructing the illustrative example pre-
sented in Figure 3. Consider the base scenario characterized 
by the following parameters: 6, 0.99, 1, 20T h bα= = = =
, discretized truncated normal demand and supply capac-
ity following a pattern where expected demand is given as 

1..6 (5,5,5,15,5,5)D =  and the expected supply capacity as 

1..6 (10,10,10,10,10,10)Z + = . The average capacity utiliza-
tion is 67%; however, there is a significant mismatch between 
demand and supply capacity from period to period. In particu-
lar, period 4 is problematic since the occurrence of a supply 
capacity shortage is highly likely. 

Observe the difference between the optimal base stock 
levels ˆty , determined by solving , and the myopic optimal 
levels ˆ M

ty . The myopic optimal solution ˆ M
ty  only optimizes 

an uncapacitated single-period problem. Therefore, the cor-
responding base stock levels follow changes in mean demand, 
while the height depends on the relevant cost structure, in our 
case the ratio between the backorder and inventory holding 
cost, b h , through . Optimal base stock levels align with the 

myopic ones only in some periods, in our case, in periods 1, 
5 and 6, and are close in the peak demand period 4; in the 
rest of the periods, ˆty  lies above ˆ M

ty . This difference is due 
to the anticipation of future capacity shortages. The rational 
reaction is to pre-build stock to prepare in advance. Based on 
this insight, we can state the following conditions when an 
inventory buildup is needed and potentially brings consider-
able benefits to the decision-maker:
n	 when there is a mismatch between the demand and supply 

capacity, meaning that there are time periods when the 
supply capacity is highly utilized or even over-utilized, 
but there are also periods when capacity utilization is 
low;

n	 when we can anticipate a possible mismatch in the future; 
and

n	 when we have enough time and excess capacity to build 
up the inventory to a desired level to avoid backorder 
accumulation during a capacity shortage.
For an uncapacitated system Veinott (1965) shows that 

the myopic policy represents near-optimal upper bound to the 
optimal policy. Since ˆ M

ty is near-optimal in the uncapacitated 
case, the difference between  ˆty  and ˆ M

ty  reflects the need to 
pre-build inventory by raising the base stock level in the capac-
itated case. In our example, we see that the pre-build phase for 
period 4 has started back in period 2, where the heightened 
ˆty  already reflects the need for inventory accumulation. In 

the peak period, the nature of the problem is close to a single-
period problem thus ˆ M

ty represents a good upper bound, but 
only if there are no anticipated future capacity shortages for at 
least a few following time periods.

Some anticipation is already possible without knowledge 
of actual supply capacity realizations in future periods, as 
we have just shown. For this, knowing the demand and sup-
ply capacity distributions is enough. However, we argue that 
through the use of ACI we can improve inventory control 
further due to better information about the evolution of the 
system in near future periods. In Figure 4, we present the 
same base setting in the case where we have an insight into 
supply capacity realizations in the next period, 1n = . We see 
that, if ACI warns us of a capacity shortage (a low 1tz+

+ ), we 
will respond by increasing the base stock level. This is also 

Figure 3: Optimal ˆty
 
and myopic optimal ˆ M

ty  base stock levels.
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the case in the peak period, where ˆty  can exceed ˆ M
ty , when 

shortages are announced by ACI in the remaining two periods; 
although their probability is likely to be very small. A practical 
interpretation of the above findings can be made for a simple 
heuristic policy, which instructs the following: 
n	 Set the base stock level at ˆ M

ty , unless you anticipate a 
capacity shortage. 

n	 In the case of a shortage the inventory needs to be pre-
build and thus the base stock level needs to be increased 
above ˆ M

ty  in the pre-build periods. 
The determination of the amount of the pre-build inven-

tory needed is based on an evaluation of future mismatches 
between available capacities (given by ACI for near future 
periods and the parameters of capacity distributions for distant 
periods) and the myopic optimal base stock levels. We start by 
determining the mismatch in supply capacity tc in period t , 
where we distinguish two possible cases. First, we look at a 
mismatch in supply capacity for the case when ACI is already 
available for that period. In this case, we know the realization 
of capacity and therefore ( )t tc z+  is a function of the actual 
realization of supply capacity tz+. In the second case, the sup-
ply capacity is not yet revealed so the best we can do is to work 
with the expected supply capacity, thus, )( ( )t tc E z+ . We for-
mulate the mismatch of supply capacity tc in period t  as:

1 1
( ) ˆ ˆ ( )    

( ( )) ( )
M Mt t t
t t t

t t t

c z z
y y E D

c E z E z

+ +

− −+ +

   
= − − +      

. 
         (7)

Observe that tc  is determined as the difference between 
the myopic base stock level ˆ M

ty  and the ending inventory 
position ty  (determined from , where 1 1ˆ ( )M

t t tx y E D− −= −
), given that all of the supply capacity tz+ available in period 
t  was used. A negative tc  corresponds to an excess of sup-
ply capacity, and a positive to a lack of capacity in period t

. Knowing the potential lack or excess of supply capacity in 
each period allows us to calculate the amount of inventory 
build-up required in a particular period. That is the amount 
of inventory we have to build in advance in period t  to cover 
future supply capacity/demand mismatches. We will denote 
this inventory as anticipatory ,t na  required in period t :

( ), 0 1, 0 1 1 ,  0max ( ( )),0     t n t n t t if na a c E z+
= + = + ++ == , 

 

( ), , 1, 1, 1 1 1 ,  0( ) max ( ) ( ),0     t n t n t n t n t t if na z a z c z+ + +
+ + − + + >= +

 

         (8)

Observe that , ,( )t n t na z +  is a function of ACI, if ACI is 
available ( 0n > ). The anticipatory inventory is calculated 
recursively from the end of the planning horizon down to the 
first period. First, the anticipatory inventory for 0n = case is 
determined and it is then used as the building block to deter-
mine the anticipatory inventory for 1n = case. In the same 
manner we proceed by calculating ,t na  for higher n , where 

,t na  is a function of all currently available ACI. Where excess 
supply capacity is available, we can use it to build up the 
anticipatory inventory. If the size of the excess supply capac-
ity accounts for more than the anticipatory inventory needed, 
we only use up to the amount needed and we therefore limit 
ourselves to positive values of tc , by imposing a max function 
in the above formulation. If current excess supply capacity is 
not high enough some of the anticipatory inventory needs to 
be pre-built in earlier periods.

Finally, the heuristic base stock level ,ˆ H
t ny  is determined 

by raising it above the myopic optimal level ˆ M
ty , for the 

extent of anticipatory inventory ,t na :

, , ,ˆ ˆ ( )H M
t n t t n t ny y a z += +



        (9)

 

Figure 4: Optimal ˆty  and myopic optimal ˆ M
ty  base stock levels for the ACI model
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While with the myopic base stock level we only account 
for uncertainties in demand, by adding the anticipatory stock 
we now also account for future capacity shortages. With this 
the variability in future supply capacity is also taken into 
consideration. Given the actual supply capacity realization 
in the current period the ending inventory position may not 
be raised to the heuristic base stock level ,ˆ H

t ny . In this case, 
all of the available capacity is used. In general the heuristic 
policy behaves in the same way as the optimal policy, where 
the optimal base stock level ˆty  is replaced by its heuristic 
counterpart. 

4 The value of ACI and heuristic  
performance

In this section we present a numerical study to assess the value 
of ACI and the heuristic performance. The results are given in 
Table 2. Using the same base setting as in the previous sec-
tion, we now look at the influence of the cost structure and the 
variability of both the demand and supply capacity on heuristic 
performance. We vary:

	 the coefficient of the variation of demand 

(0,0.25,0.5,0.7)DCV = and supply capacity 

(0,0.25,0.5,0.7)ZCV = , where both CVs do not 

change through time; and

	 the cost structure, by changing the backorder cost 

(5,20)b = and keeping the inventory holding cost con-

stant at 1h = , thus changing the cost ratio b h .

We give the following managerial insights about the situ-
ations in which ACI considerably improves the inventory cost. 
The value of ACI is defined as the reduction in cost for the 
case where ACI is available 0n > , relative to the base case 
with no ACI, 0n = . Looking at the results presented in Table 
1, we see that cost reductions of 5-15% can be expected and in 
certain situations they can exceed 20%. Several factors affect 
the value of ACI and we formulate the following conditions in 
which inventory costs can be effectively decreased: (1) when 
there is a mismatch between demand and supply capacity, 
which can be anticipated through ACI, and there is an oppor-
tunity to pre-build inventory in an adequate manner; (2) when 
uncertainty in future supply capacity is high and ACI is used to 
lower it effectively; and (3) in the case of high backorder costs, 
which further emphasizes the importance of avoiding stock-
outs. In these circumstances, managers should recognize the 
importance of ensuring the necessary information exchange 
with their suppliers. Such relations may bring considerable 
operational cost savings.

We proceed by establishing the performance of the pro-
posed heuristic. To do this, we give two accuracy measures: 
the Absolute error and the Relative error. Both are determined 
based on a comparison of total inventory costs between the 
heuristic case and the optimal case, where the first one gives 
the absolute cost difference and the latter the relative one. 
Observe that in general the heuristic performance is within or 
close to 1% of the optimal. However, we can also see that there 
are some variations for different selections of the parameter 

settings we have tested. In a completely deterministic scenario 
(Exp. No. 1), the heuristic manages to reproduce the optimal 
results. For stochastic scenarios, where cost reduction through 
ACI is possible, we see that the relative error decreases when 
we extend the ACI horizon n . This is in line with the intui-
tion which suggests that the heuristic will perform better if 
the general uncertainty is lower, and the uncertainty in this 
case is effectively reduced through ACI. This suggests that 
the proposed heuristic should be applied in the ACI setting 
in particular. While this can be observed in most of the cases 
where 20b = , it does not hold for some scenarios where 

5b = . We attribute this to the fact that the heuristic generally 
puts a stress on assuring enough inventory build-up, which 
can be suboptimal in the case of a low b h . In a practical 
application this might not pose a big problem since one rarely 
comes across such a low b h  ratio. Also observe also that the 
heuristic performs well in the case where demand uncertainty, 

DCV , is high relative to the capacity uncertainty, 
Z

CV + , or 
in the case where both demand and capacity uncertainty are 
similar. This is due to the heuristic being highly sensitive to 
demand uncertainty through the use of myopic optimal base 
stock levels as the simple lower bounds. However, the effect 
of changing DCV and

Z
CV + is heterogeneous and by itself 

it does not exhibit any obvious monotonic properties. The 
heuristic performance is worst for the specific setting of high 
capacity uncertainty and low ACI availability, particularly the 
case of 0n = , which is due to the fact that the proposed heu-
ristic does not fully account for capacity variability. However, 
because of the complexity of the underlying model it should 
be noted here that, for the base case of nonstationary demand 
and capacity uncertainty, no easily applicable approximation 
techniques are proposed in the literature apart from more 
complex and time-consuming algorithms involving simulation 
and search methods.

5 Conclusions

In this paper, we propose a heuristic to evaluate the cost of 
the ACI inventory model and determine the value of ACI. The 
heuristic development was motivated by the fact that the opti-
mal analysis of the problem is very tedious, even impossible 
for larger, real-life problems. Based on the insights gained 
from analyzing the optimal policy, we first give the relevant 
managerial insights by showing when ACI can bring consid-
erable inventory cost reductions and describe the important 
characteristics that had to be addressed when formulating the 
heuristic. This, in itself, is a valuable result since it helps with 
building up decision-makers’ intuition and helps them address 
the problem better in a realistic situation. We can conclude 
that the performance analysis of the proposed heuristic shows 
that the heuristic works reasonably well in the ACI setting. 
Especially in the case where ACI is available and the com-
mon backorder to inventory holding cost ratio is assumed, the 
heuristic performance is within 1% of the optimal. We foresee 
that efforts to establish a superior heuristic may be seriously 
hampered by the complexity of the underlying problem. For 
an inventory control policy to be applicable and effective in a 
practical situation, a certain degree of simplification is needed 
and finding a good heuristic is a compromise between remain-
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ing practical and improving accuracy by increasing the com-
plexity. The proposed heuristic could also be tested for other, 
more specific demand/capacity situations such as where we 
are dealing with two-point capacity distribution (either zero or 
full capacity availability). 

Literature 
Bollapragada, S. & Morton, T. E. (1999). Myopic heuristics for the 

random yield problem. Operations Research. 47, 713-722.
Bush, C. & Cooper W. (1988). Inventory level decision support. 

Production and Inventory Management Journal. 29(1), 16-20.   

Buxey, G. (1993). Production planning and scheduling for seasonal 
demand. International Journal of Operations and Production 
Management. 13(7), 4-21. DOI: 10.1108/01443579310038769 

Ciarallo, F. W., Akella R. & Morton T. E. (1994). A periodic review, 
production planning model with uncertain capacity and uncertain 
demand – optimality of extended myopic policies. Management 
Science. 40, 320–332. DOI: 10.1287/mnsc.40.3.320.   

Federgruen, A. & Zipkin P. H. (1986). An inventory model with 
limited production capacity and uncertain demands i. the aver-
age-cost criterion. Mathematics of Operations Research. 11, 
193–207. DOI: 10.1287/moor.11.2.193.   

Güllü, R., Önol E. & Erkip N. (1997). Analysis of a deterministic 
demand production/ inventory system under nonstationary sup-

Table 2: The value of ACI and heuristic performance



Organizacija, Volume 42 Research papers Number 4, July-August 2009

136

ply uncertainty. IIE Transactions. 29, 703-709. DOI: 10.1080/0
7408179708966380.   

Iida, T. (2002). A non-stationary periodic review production-inven-
tory model with uncertain production capacity and uncertain 
demand. European Journal of Operational Research. 140, 670-
683. DOI: 10.1016/S0377-2217(01)00218-1.  

Jakšič, M., Fransoo J.C., Tan T., de Kok A. G. & Rusjan B. 
(2008). Inventory management with advance capacity infor-
mation. Beta publicatie. wp 249, Beta Research School for 
Operations Management and Logistics, Eindhoven University of 
Technology, The Netherlands. 

Kapuscinski, R. & Tayur S. (1998). A capacitated production-inven-
tory model with periodic demand. Operations Research. 46, 
899-911. DOI: 899-911 10.1287/opre.46.6.899.  

Khang, D. B. & Fujiwara O. (2000). Optimality of myopic ordering 
policies for inventory model with stochastic supply. European 
Journal of Operational Research. 48, 181-184. DOI: 10.1287/
opre.48.1.181.12442.

Metters, R. (1997). Production planning with stochastic seasonal 
demand and capacitated production. IIE Transactions. 29, 1017-
1029. DOI: 10.1080/07408179708966420.  

Metters, R. (1998). General rules for production planning with sea-
sonal demand. International Journal of Production Research. 36, 
1387–1399. DOI: 10.1080/002075498193381. 

Morton, T. E. & Pentico D. W. (1995). The finite horizon nonsta-
tionary stochastic inventory problem: near-myopic bounds, 
heuristics, testing. Management Science. 41, 334-343. DOI: 
10.1287/mnsc.41.2.334.   

Veinott, A. (1965). Optimal policy for a multi-product, dynamic, 
non-stationary inventory problem. Management Science. 12, 
206-222. DOI: 10.1287/mnsc.12.3.206.

Marko Jakšič currently holds a position of a Teaching 
Assistant at the Faculty of Economics University of Ljubljana. 
His area of expertise is Operations Management and espe-
cially Supply Chain Management, which are the topics he 
is lecturing on at the bachelor and the master level studies. 
He has attained his Ph.D. in cooperation with Technische 
Universiteit Eindhoven, The Netherlands, as a doctoral stu-
dent at Faculty of Economics and a student at Beta School 
for Operations Management and Logistics. His research 
work is focused on quantitative analysis of inventory mana-
gement strategies in supply chains and as a result he has 
published several papers in domestic and foreign journals 
and conferences.

Borut Rusjan attained his Ph.D. at the Faculty of Economics 
University of Ljubljana in 1998. He is currently emplo-
yed as an Associate Professor in the Department of 
Management and Organization, primarily lecturing in the 
field of Operations and Quality management. He has 
published a series of papers in domestic and international 
journals and conferences, where his main research interest 
lies in strategic view of operations management, quality 
management and business excellence.   

Hevrističen pristop k uravnavanju zalog z informacijo o razpoložljivosti oskrbe

V sodobnih oskrbnih verigah je v zadnjih dveh desetletjih močno prisoten trend izmenjave informacij, ki omogočajo izboljša-
nje poslovanja posameznih podjetij, kot tudi celotne oskrbne verige. S pomočjo natančnih in pravočasnih informacij, katerih 
prenos je z nedavnim razvojem informacijskih tehnologij močno olajšan, se podjetja uspešno spopadajo s spremenljivimi in 
negotovimi pogoji poslovanja. V članku predstavimo model uravnavanja zalog s periodičnim spremljanjem zalog v pogojih nee-
nakomernega stohastičnega povpraševanja z omejeno zmogljivostjo oskrbe, kjer ima člen oskrbne verige dostop do informa-
cije o razpoložljivosti oskrbe. Informacija o razpoložljivosti oskrbe zmanjša negotovost prihodnje oskrbe in omogoči managerju 
učinkovitejše naročanje. Na podlagi glavnih vpogledov pridobljenih z analizo optimalne politike naročanja razvijemo praktično 
uporabno hevristično metodo. Z numerično analizo določimo vrednost informacije o razpoložljivosti oskrbe in prepoznamo 
scenarije, kjer je ta največja. Ob tem na podlagi primerjave med rezultati optimalne politike naročanja in predlagane hevristike 
izmerimo natančnost le-te in podamo pogoje, ki morajo biti izpolnjeni, da hevristika doseže želeno natančnost.

Ključne besede: Operacijske raziskave, uravnavanje zalog, stohastični modeli, informacija o razpoložljivosti oskrbe, hevri-
stika


