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Background: The Weibull distribution is one of the most important lifetime distributions in applied statistics. Weibull 
analysis is the leading method in the world for fitting and analyzing lifetime data. We discuss one of the earliest deci-
sion support system for the assessment of a distribution for the parameters of the Weibull reliability model using expert 
information. We then present a different approach to assess the parameters distribution.
Objectives: The studies mentioned in this paper aimed to construct a distribution of the parameters of the Weibull reli-
ability model and apply it in the domain of Maintenance Optimization. 
Method: The parameters of the Weibull reliability model are considered random variables and a distribution for the 
parameters is assessed using informed judgment in the form of reliability estimates from vendor information, engineer-
ing knowledge or experience in the field.
Results: The results are the development of modern maintenance optimization models that can be embodied in deci-
sion support systems.
Conclusion: While the information management part is important in the building of maintenance optimization decision 
systems, the accuracy of the mathematical and statistical algorithms determines the level of success of the maintenance 
solution.
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Weibull Decision Support Systems  
in Maintenance

1	 Introduction

In maintenance optimization, a decision support system is 
a computer-based information system for the scheduling of 
events such as inspection, preventive maintenance, repair 
and replacement of operating equipment in manufacturing 
and industrial environments. The decisions are based on 
optimality criteria and involve the use of mathematical algo-
rithms. The management of information is important and 
involves the collection of historical data. The second essen-
tial part is the set of mathematical and statistical algorithms 
used in the determination of optimal courses of actions. The 
accuracy and efficiency of these algorithms determines the 

level of success of the maintenance optimization routines. 
We present solutions to a mathematical computational 
problem and a statistical modeling problem needed in the 
solving of maintenance optimization problems. We focus 
on the Weibull distribution in Reliability and reintroduce 
one of the earliest Weibull Decision Support Systems in 
Reliability that incorporates expert opinion. We follow with 
the modern construction of a prior probability distribution 
for the parameters of the lifetime distribution for use in 
several maintenance optimization scenarios. In one of the 
maintenance problems, we point to the exact calculation 
of the renewal function in the case of an adaptive block 
replacement strategy. We illustrate the approaches with 
simulated results. 
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1.1 	 The Weibull distribution for lifetime data

The Weibull distribution is one of the most important life-
time distributions in applied statistics. First identified by 
Fréchet (1927) and first applied by Rosin and Rammler 
(1933), it was described by Waloddi Weibull in 1937 and 
published for the first time in 1939 (Weibull, 1939) with the 
title ‘A statistical theory of the strength of material.’ It was 
written in order to explain the, at that time, well known but 
unexplained facts that the relative strength of a specimen 
decreases with increasing dimensions and that its bending 
strength is larger than its tensile strength (Weibull, 1981). 
Delayed by the Second World War and after an unsuccess-
ful attempt to publish the result in a well-known British 
journal that deemed it to be interesting but of no practical 
importance, Weibull published his landmark paper in 1951 
titled ‘A statistical distribution function of wide applicabil-
ity’ (Weibull, 1951). Even then, the reaction to his paper in 
the 1950s was negative, varying from skepticism to outright 
rejection. Weibull’s claim that the data could select the 
distribution and fit the parameters seemed too good to be 
true. However, pioneers in the field like Dorian Shainin and 
Leonard Johnson applied and improved the technique. The 
U.S. Air Force recognized the merit of Weibull’s method 
and funded his research until 1975. Today, Weibull analysis 
is the leading method in the world for fitting and analyzing 
life data (Abernethy, 2006). For more than half a century the 
Weibull distribution has been used by statisticians in various 

fields and the research is ongoing (Sultan and Mahmoud, 
2007; Pak et al., 2013). Together with the normal, expo-
nential, χ2, t and F distributions, the Weibull distribution 
is, without any doubt, the most popular model in modern 
statistics (Rinne, 2009). It is particularly true in Reliability 
and survival analysis, where the distribution is applied to 
the modelling of lifetime data. The Weibull is a useful fail-
ure model in both biomedical and engineering applications 
(Singpurwalla, 2006). 

1.2 	 Reliability Assessment Incorporating 
Expert Opinion 

In classical statistics, in order to fit a statistical model to a 
life data set, the analyst estimates the parameters of the life-
time distribution that most closely fits the data. The param-
eters control the scale, shape and location of the distribution 
function (ReliaSoft Corporation, 2014). Several methods 
have been devised to estimate the parameters. These include 
probability plotting, rank regression on x (RRX), rank 
regression on y (RRY) and maximum likelihood estimation 
(MLE). In Bayesian statistics, the approach is different. The 
parameters of the model are considered random variables 
and a distribution for the parameters is assessed. We con-
sider the problem of the assessment of a distribution for the 
parameters of the Weibull reliability model. Using informed 
judgment in the form of reliability estimates from vendor 
information, engineering knowledge or experience in the 

Figure 1: Plot of the reliability function in Singpurwalla (1988)
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field, we look at building a probability distribution for the 
parameters (λ, β) of the Weibull distribution with reliability 
function . Singpurwalla (1988) outlined 
the principles and discussed the development of such pro-
cedure for reliability assessment of items whose life lengths 
are described by the Weibull distribution, whose reliability 
function is shown in Figure 1. The software, An Interactive 
PC-Based Procedure for Reliability Assessment (IPRA), 
prepared by the first author of this article and cited in Goel 
(1988), is one of the earliest Weibull Decision Support 
Systems in Reliability that incorporates expert opinion. At 
the time, the graphics were very basic (Figure 2) and the 
program was still transported on a floppy disk. Aboura, 
Singpurwalla and Soyer (1989a, 1989b, 1989c) describe 
the software and the theory. Aboura and Soyer (1986) and 
Aboura and Campodonico (1992) provide users’ manuals. 

Singpurwalla and Song (1986) also presented an 
approach for the analysis of Weibull lifetime data using 
expert opinion. While many authors in the Bayesian litera-
ture use expert opinion on the values of the parameter vector 
(see Bousquet, 2006), Singpurwalla (1988) and Sinpurwalla 
and Song (1988) introduced a slightly different approach 
and assumed that an expert was able to provide information 
about the median lifetime and give an estimate of its prior 

mean. Fixing the marginal prior distribution of the shape 
parameter β, they obtained a complete prior on (λ, β). For a 
literature review on the use of expert opinion in probabilistic 
risk analysis see Ouchi (2004).

1.3 	 Estimation using initial reliability  
estimates

There are two main difficulties using the Weibull distribution 
(Bousquet, 2010). First, its only conjugate prior distribution 
is continuous-discrete (Soland, 1969) and remains difficult 
to justify in real problems (Kaminskiy and Krivtsov, 2005). 
Second, the meanings of the scale parameter and the shape 
parameter greatly differ. Their values and correlation remain 
hard to assess by non-statistician experts (Bousquet, 2010). 
To alleviate this difficulty, and following on the idea of ask-
ing expert quantile information, Aboura (1995) introduced 
a prior elicitation procedure which uses expert opinion on 
the reliability of the item rather than on the parameters 
directly. In concept, Aboura (1995) can be viewed as an 
extension of the use of the median by Singpurwalla (1988) 
and Sinpurwalla and Song (1988). However they differ in 
the construction of the expert model and the resulting priors 

Figure 2: 3D plots in the IPRA software (Singpurwalla, 1988)
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for the Weibull parameters. In doing so, it also extends a 
result by Mazzuchi and Soyer (1996) who used Soland’s 
distribution (Soland 1969) for the parameters of the Weibull 
lifetime distribution. The approach of Aboura (1995) is used 
in Aboura and Agbinya (2013) and Aboura and Robinson 
(2013) in the context of maintenance optimization.

2	 Research Methods in Maintenance 
Optimization 

The purpose of the reliability procedures discussed in the 
previous section is often their incorporation in maintenance 
optimization decision support systems. While the informa-
tion management part is important in building maintenance 
optimization decision support systems, the accuracy of the 
mathematical and statistical algorithms determines the level 
of success of the maintenance software. In their mainte-
nance optimization solution, Mazzuchi and Soyer (1996) 
used Soland’s (1969) distribution for the parameters of the 
Weibull lifetime distribution. A discretized Beta distribution 
is used for the parameter β. Although such a use of Soland’s 
distribution does provide a starting prior joint density, one 
could dispute the feasibility of collecting any direct infor-
mation about β from an expert, the abstract model parameter 
β not having any physical meaning. One can also argue 
about the arbitrariness used by Mazzuchi and Soyer (1996) 
to select the range of the discretized Beta distribution for β, 
unless this range is made to cover most of the likely values 
of β. Aboura and Agbinya (2013) and Aboura and Robinson 
(2013) remedy to these shortfalls by constructing a prior 
density for (λ, β) using estimates of observables. The range 
of β and the dependence structure of (λ, β) result naturally 
from an initial reliability estimation. The distribution of 
Soland (1969) is extended to include dependence and fitted 
through moments to the prior distribution.

2.1 	 Maintenance optimization procedure 
using initial reliability estimates

Upon the introduction of new equipment or at the start of 
a study, reliability estimates are often available in the form 
of vendor information or informed judgment from mainte-
nance operators. As failure and survival data are collected, 
a better assessment of the life length characteristics of the 
items becomes possible, allowing a more effective estima-
tion procedure. Consider a structure of M identical items 
operating independently of each other under similar condi-
tions. At prescribed points in time T1, T2, ..., etc., all items 
are replaced by new ones. An item that fails before the next 
replacement time remains failed. We let T0 be time 0. As 
failures accumulate between the replacement times, two 
types of data collection are possible; (1) the exact failure 
times are recorded (complete data) and (2) the numbers of 

failures per time interval are recorded (interval censored 
data). Aboura and Agbinya (2013) treat both cases and 
consider only the case of the numbers of failures between 
replacement times in case (2). That is the interval censored 
data consist of the number of failures in [Ti –1, Ti), i = 1, 2, 
...The more general case of interval censored data involves 
inspection points in [Ti –1, Ti) where the numbers of failures 
are recorded between the inspection points. The extension to 
the inspection case is straightforward given that the inspec-
tion times are fixed. A further extension would be to con-
sider the inspection times as decision variables in the setting 
of an optimal maintenance strategy. Let T be the lifetime of 
the item under consideration. We assume that reliability esti-
mates r(n) = (r1, r2, ..., rn) are provided for different mission 
times ti, i = 1, 2, ..., n, with, rn + 1 being a lower bound on 
the reliability of the item. Assuming a Weibull model for the 
lifetime T with reliability function, the prior distribution of 
(λ, β) is constructed in Aboura and Agbinya (2013) and the 
maintenance optimization solutions provided. For example, 
in the Penalty Cost Model I of Aboura and Agbinya (2013), 
the model assumes an increasing cost function cf (j) for the 
failure of j items. Various functions may be chosen to model cf 
(j) depending on the application. The maintenance optimiza-
tion problem at time at time Ti –1 is

where

 is the prior distribution constructed with the 
expert opinion using the initial reliability estimates. It can be 
shown that for an appropriate choice of the penalty function 
cf , an optimal solution ΔTi obtains for each stage i = 1, 2, 
…, etc. 

2.2 	 Maintenance optimization procedure 
using the renewal function

In Aboura and Robinson (2013), the maintenance scenario 
differs and requires the computations of the renewal function 
for the Weibull distribution. The maintenance optimization 
procedure consists of determining at each planned replace-
ment time, Ti –1 the next preventive replacement time Ti ,  
i = 1, 2, …. In between the prescribed times T1, T2, ..., 
replacement by a new item is made upon failure of the 
operating item/system. The maintenance procedure applies 
the well-known Block Replacement protocol in which the 
item under consideration is replaced at predetermined points 
in time by a new item (or by an item repaired and brought 
back to the ‘new’ state), regardless of the age of the failed 
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item. In the traditional Block Replacement approach, the 
time intervals between planned replacements are equal and 
determined at the start of the operations. In the approach 
by Aboura and Robinson (2013), the replacement times 
are determined only a stage ahead. The adaptive nature of 
the policy introduced reduces considerably the loss due to 
a Block Replacement protocol, as it reaches for an optimal 
replacement time. At time Ti –1, i = 1, 2, ..., ΔTi = Ti – Ti –1, is 
determined as the solution of

cp is the replacement cost, cf is the cost per failure and 
 f (m) = (f1, f2, ... fm) and s(l) = (s1, s2, ... 

sl) are the failure and survival times respectively, observed 
in . D0 is the set of all relevant information known 
prior to and at time T0 In this case,  (see 
Aboura and Robinson, 2013).  is obtained by 
averaging over (λ, β),

where  is the prior distribution of (λ, β) for i = 
1 and the posterior distribution of (λ, β) at time Ti –1 for i > 
1, derived from the same prior distribution at time T0 used 
in Aboura and Agbinya (2013).

To solve the maintenance optimization problem, the 
renewal function for the Weibull distribution must be 
computed accurately. Let N(t) be the number of failures 
(and renewals) in the time interval (0, t], then the renewal 
function, H(t) = E(N(t)) is the expected number of renew-
als in that time interval. The expected number of renewals 

between successive times Ti and Ti –1 is defined by, where 
Δ(Ti ) = Ti – Ti –1 is the optimal time interval to be deter-
mined. For the Weibull lifetime model with distribution 
function , the renewal function H(t/λ, β) 
is available in series form (Smith and Leadbetter, 1963) but 
becomes impracticable to calculate for most t > 1, β > 1. 
One can use a simple approximation due to Smeitink and 
Dekker (1990), but Aboura and Robinson (2013) provide 
a more accurate solution, due to Constantine and Robinson 
(1997), for computing the Weibull renewal function and its 
derivative h(t/λ,β)=dH(t/λ, β)/dt. Another method due to 
Robinson (1997) can also be used to compute the renewal 
function to any desired degree of accuracy. That method 
solves directly the integral equation expression for H(t/λ, 
β) (see e.g. Cox (1962) for general renewal theory) in terms 
of multi time-segment Chebyshev polynomial series. It is 
a method suitable for a wide range of probability density 
functions, both parametric and nonparametric. However, 
the quicker method of Constantine and Robinson (1997), 
dedicated to the Weibull renewal function is used to provide 
accurate results. The methodology can be extended with 
similar accuracy to the case of the Generalised Gamma 
lifetime distribution (Robinson, 1998) and to a wide range 
of lifetime distributions.

3	 Research Results

In Aboura and Agbinya (2013), several optimization models 
were studied. For example in their Constant Cost model, 
there is no dollar value associated with the failure of an 
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Figure 3: The first replacement time ΔT1 = 0.265 and the optimal interval ΔT∞ = 0.481
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item. The range of possible time intervals before the next 
replacement is limited by a constraint on the expected num-
ber of failures in the considered interval. The maintenance 
optimization problem is solved for both collection data 
protocols and simulation is conducted to show the conver-
gence of the solution. In a simulated example where λ = 2, 
β = 3 and K/M = 0.2 they assume that reliability estimates  
r(5) = (.99, .95, .60, .05, .01) for mission times t(5) = (.2, .4, 
.75, 1, 1.2) are given by an expert or taken from some other 
knowledgeable source. M is the number of operating 
items and K is a constraint on the number of failed items 
(see Aboura and Agbinya, 2013). The optimal value for the 
first replacement time T1 is obtained as the time t at which the 
prior reliability R(t/D0) is equal to 1 – K/M = 0.8. Therefore 
in the example the first replacement of all items is to occur 
at time T1 = ΔT1 = 0.265. The prior reliability function t/D0) 
is shown in Figure 3 with the resulting optimal first time 
interval ΔT1 = 0.265. The dashed line function in the graph of 
Figure 3 is e–2t3 with the corresponding limiting optimal time 
interval .

At the successive times Ti–1, i = 2, 3, ... the opti-
mal time intervals ΔTi are obtained as the solution of  
R(ΔT1/Di–1) = 1 – K/M. In the case of complete data, 
R(ΔT1/Di–1) obtains in a closed form while it must be com-
puted numerically in the case of interval censored data. 
The optimal time intervals between replacements, ΔTi,  
i = 1, 2 …, 20, are plotted in Figure 4 for a 20 stages simu-
lation of the maintenance routine. The exact failure times 
are recorded between the replacement times. The hori-
zontal dashed line in Figure 4 marks the limiting optimal 

time interval ΔT∞ = 0.481. As data is gathered between the 
replacement times, the optimal time intervals improve to 
finally stabilize around the limiting value. 

Although Aboura and Robinson (2013) provide an 
accurate approach for implementing the maintenance opti-
mization procedure, a simple and practical approach can 
be substituted that makes use of Maximum Likelihood 
Estimates at each planned replacement stage. If initial expert 
information is available in the form of reliability estimates 
such as (r(n), t(n)), Least Squares Estimates can be used to 
produce the first replacement time T1. Maximum Likelihood 
Estimates will then be used at the next stages for producing 
the optimal planned replacement times. The MLE approach 
is attractive in that it eliminates the need for averaging over 
a prior/posterior distribution, reducing the number of times 
the renewal function is computed. In an example, Figure 5 
shows optimal replacement time intervals ΔTi for i = 1, ..., 
20 as dictated by the MLE based maintenance optimization 
procedure (Aboura and Robinson, 2013). In this example, 
the limiting optimal replacement time interval is 0.452. In 
their study, Aboura and Robinson (2013) show the behav-
iour of the optimal replacement time interval ΔTi, i = 1, 2, 
..., 11, for 100 simulated replications. The first replacement 
time interval ΔT1 is set arbitrarily to 1. They also display 
the boxplot of the 10 stages and plot the average optimal 
replacement time interval, the average taken over the 
100 replications. They also compare the average optimal 
replacement time interval over 10 stages, stage 2 to stage 
11, for the case of 10 and 20 items operating independently. 
The average of the replacement time interval is taken over 
100 simulated replications for the first case (10 items) while 
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Figure 4: The optimal time intervals ΔTi, i = 1, 2 …, 20
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it is taken over 50 simulated replications for the second case 
(20 items).

4	 Discussion

A variety of optimization models where replacement takes 
place require statistical modeling and accurate resolution 
of the optimization problems that ensue. Once these issues 
are addressed, effective decision support systems can be 
developed. Adaptive procedures for the optimal replacement 
of identical items operating under similar conditions are 
outlined. In Aboura and Agbinya (2013), two data collection 
scenarios are considered. The procedure was demonstrated 
and its convergence shown in both data collection cases in 
simulated examples. The procedure is easy to implement 
and can result in substantial savings. The adaptive nature 
of the procedure is a modern feature that permits an updat-
ing of the lengths of times between replacements as failure 
information is gathered. The methodology was developed 
following technical discussions with an electricity company. 
Of particular importance in some maintenance scenarios, 
is the resolution of problems such as the computation of 
the renewal function. Robinson (1997) solved the Weibull 
problem. The solution was extended to the Generalized 
Gamma distribution through the result of Robinson (1998). 
A whole range of optimization models can be established on 
the basis of these results. Aboura and Robinson (2013) dem-
onstrate the accurate application of probabilistic updating to 
the maintenance optimization problems. To avoid excessive 
computations, the Maximum Likelihood Estimates can be 
used, as illustrated through simulation. 
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