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Background: This paper generalizes the results of Embedding problem of Fuzzy Number Space and its extension into 
a Fuzzy Banach Space C(Ω) × C(Ω), where C(Ω) is the set of all real-valued continuous functions on an open set Ω. 
Objectives: The main idea behind our approach consists of taking advantage of interplays between fuzzy normed 
spaces and normed spaces in a way to get an equivalent stochastic program. This helps avoiding pitfalls due to severe 
oversimplification of the reality. 
Method: The embedding theorem shows that the set of all fuzzy numbers can be embedded into a Fuzzy Banach space. 
Inspired by this embedding theorem, we propose a solution concept of fuzzy optimization problem which is obtained 
by applying the embedding function to the original fuzzy optimization problem. 
Results: The proposed method is used to extend the classical Mean-Variance portfolio selection model into Mean 
Variance-Skewness model in fuzzy environment under the criteria on short and long term returns, liquidity and dividends.
Conclusion: A fuzzy optimization problem can be transformed into a multiobjective optimization problem which can be 
solved by using interactive fuzzy decision making procedure. Investor preferences determine the optimal multiobjective 
solution according to alternative scenarios. 

Keywords: Embedding problem, Fuzzy optimization, Fuzzy Banach Space, Portfolio selection.

Fuzzy optimization for portfolio selection 
based on Embedding Theorem in Fuzzy 

Normed Linear Spaces

1	 Introduction

Based on the fact that in many situations the distance 
between two points is in exact rather than a single real 
number, Kaleva and Seikkala initiated the concept of a 
fuzzy metric space by describing the distance of points as s 
fuzzy real number. Since each usual metric space and each 
Menger probabilistic metric space can be considered as s 
special case of fuzzy metric space, the study for the fuzzy 
metric space has been attracted many authors, and several 

results for nonlinear mappings have been given in some 
literatures. The concept of a fuzzy norm on a linear space is 
of comparatively recent origin. It was Katsaras, who while 
studying fuzzy topological vector spaces, was the first to 
introduce in 1984 the idea of fuzzy norm on a linear space. 
Following his pioneering work, Felbin offered in 1992 an 
alternative definition of a fuzzy norm on a linear space 
with an associated metric of the Kaleva and Seikkala type. 
A further development along this line of inquiry took place 
when in 1994; Cheng and Mordeson evolved the definition 
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of a further type of fuzzy norm having a corresponding met-
ric of the Kramosil and Michalek type. Since these results 
apparently also constitute various types of fuzzy norms, the 
further line of inquiry that obviously suggests itself pertains 
to the determination of relations, if any, among these fuzzy 
norms. In 2007, an attempt was made to find such relation 
by making a comparative study of the fuzzy norms defined 
by Katsaras, Felbin and Bag and Samanta. It has been 
observed that the fuzzy norm defined by Bag and Samanta is 
similar to that of Katsaras who defined it in a different way. 
On the other hand, Felbin’s type fuzzy norm corresponds 
to a pair of which one is a fuzzy norm in our sense and the 
other is a fuzzy anti-norm. It is as important the concept of 
Menger probabilistic normed linear space introduced by 
Serstnev and moreover, each usual classical normed space 
and Menger probabilistic normed spaces is special cases of 
fuzzy normed linear spaces. The authors (Sadeqi I, Solatikia 
F. 2010; Weber G.-W., Solatikia F. 2013) showed that each 
of the category of fuzzy normed space and Menger proba-
bilistic normed space is isomorphically a subcategory of the 
category of topological vector spaces and all results and the-
orems of topological vector spaces apply to fuzzy normed 
space and Menger probabilistic normed space in general, 
also as a new result they showed that C(Ω), is a fuzzy nor-
med space then Menger probabilistic normed space, while 
it is not classically norm able. So, if we replace the normed 
space C[0,1] by the fuzzy normed linear space C(Ω), then we 
get an important result in fuzzy normed linear space, while 
the same statement does not hold true in classical analysis.

Portfolio optimization is the process of allocating budg-
et between assets and managing the assets within it. The 
modern portfolio theory has been proposed by Markowitz 
(1952) that considers expected return and risk for a portfolio 
selection problem where variance is used as risk measure. 
Markowitz’s mean–variance model is the central source 
for a single period portfolio selection problem, from where 
the efficient frontier model with beta market risk and 
risk free return can be exploited. As a common standard 
portfolio model it is used the determine the performance 
of financial investments and serves as a hedge instrument 
with encompassing specifications. A wide range of fuzzy 
model applications are derived from the initially proposed 
Markowitz model. Genetic algorithms with applications 
of portfolio selection models in a fuzzy framework are 
analyzed by Gupta et al. (2012), Bermúdeza et al. (2012), 
Li and Xu (2013), Khalili-Damghani et al. (2013). Gupta 
analyze a multiobjective credibilistic model with fuzzy 
constraints of the portfolio selection problem. A hybrid 
intelligent algorithm that integrates fuzzy simulation with a 
real-coded genetic algorithm is contructed. They claim for 
more efficiency where fuzzy parameters are characterized 
by general functional forms. Bermúdeza proposed genetic 
algorithms transfering applications from their traditional 
domain of optimization to fuzzy ranking strategy for select-
ing efficient portfolios of restricted cardinality. A special 

focus is put on the ambiguity of the trapezoidal fuzzy 
number which represents the uncertainty on the return. A 
hybrid multiobjective framework integrates and synthe-
sizes a genetic based machine learning method to design an 
alternative fuzzy ranking system for comparison purposes 
based on the results from a data mining model with the 
results from a data envelope analysis model. Metaxiotis and 
Liagkouras (2012), and Khalili-Damghani et al. (2013) use 
evolutionary algorithms to evaluate fuzzy portfolio models. 
Metaxiotis and Liagkouras present a portfolio management 
model with the support of multiobjective evolutionary algo-
rithms. They utilize this framework to gain an understand-
ing of the current state of areas related to applications in 
the portfolio management research field. Khalili-Damghani 
develop an evolutionary algorithm to design the structure 
of fuzzy rule based multiobjective system. Tsaur (2013), Li 
and Xu (2013), Huang and Qiao (2012) put their focus on a 
behavioral aspect of portfolio selection. Investor behaviors 
can be classified as risk averse, risk neutral or risk affine. 
Tsaur conducts a behavioral analysis of the investor in the 
fuzzy portfolio model. They examine different investor 
risk preferences to discover an efficient method for fuzzy 
portfolio selection. In this relation, a probabilistic mean–
standard deviation model is applied to fit the risk attitudes 
of investors. In an application of a multiobjective portfolio 
selection model with fuzzy random returns Li and Xu use 
experts’ opinions and judgments and investors’ different 
attitudes in the portfolio selection process, such that the 
investor’s individual preference on return, risk and liquidity 
are considered by the help of a genetic algorithm. A similar 
model is proposed by Huang and Qiao to enable the users 
to solve a problem with currently available programming 
tools. In addition, a method of obtaining the uncertainty 
distributions of the security returns is described based on 
experts’ evaluations and presented illustratively. A TOPSIS 
compromised programming approach is designed by Liu 
et al. (2012) to transform a portfolio selection problems in 
fuzzy environment into single objective models. The model 
includes return, transaction cost, risk and skewness of the 
portfolio as decision parameters.

Wu (2004) develops models with fuzzy space and 
special spaces such as Banach spaces. In particular, Wu 
and Ma (1991) provide a specific Banach space that the set 
of all fuzzy real numbers, which was introduced by Zadeh 
(1965) and plays the most fundamental role in the theory of 
fuzzy analysis, can be embedded into a Banach space C[0,1] 
× C[0,1], where C[0,1] is the set of all real-valued bounded 
functions on [0,1] such that it is left-continuous for any t ∈ 
(0,1] and right-continuous at 0, and has a right limit for any 
t ∈ (0,1]. In 2011, Bhattacharyya and Kar extend the clas-
sical Mean-Variance portfolio selection model into Mean 
Variance Skewness model in fuzzy environment under 
the criteria on short and long term returns, liquidity and 
dividends. The embedding theorem is used to convert the 
fuzzy MVS model into crisp multi-objective constrained 
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optimization problem. They proposed a convenient tool for 
deep research of fuzzy analysis. It seems therefore reason-
able to think if the concept of Fuzzy optimization problems 
based on the embedding theorem and also Multiobjective 
fuzzy optimization for portfolio selection can be extended 
to probabilistic normed spaces and in that case enquire how 
the basic properties are affected. 

In this paper, the embedding theorem from the set of 
all fuzzy numbers into a Banach space C[0,1] × C[0,1], is 
extended to more general case, i.e., from fuzzy number 
space into a Fuzzy Banach space C(Ω), where C(Ω) is the 
set of all real-valued continuous functions on an open set Ω, 
to propose a solution concept of fuzzy optimization problem 
which is obtained by applying the embedding function to the 
original fuzzy optimization problem.

2	 Preliminaries 
For readers convenience, in this section we briefly recall 
some concepts and results from Menger probabilistic nor-
med spaces theory used in the paper.

Definition: A mapping  is called a fuzzy 
real number, whose  level set is denoted by , i.e., 

, if it satisfies two axioms:
(N1) There exists  such that .
(N2) For each .

The set of all fuzzy real numbers denoted by . If 
 and η (t) = 0 whenever t < 0, then η is called a 

non-negative fuzzy real number and  stands for the set 
of all non-negative fuzzy real numbers. The number 0 stands 
for the fuzzy number satisfying 0(t) = 1 if t = 0 and 0(t) = 0 
if t ≠ 0 clearly . The set of all real numbers can 
be embedded in  because if , then  
satisfies r(t) = 0(t – r). According to Puri and Ralescu in 
1986, we define the metric , when  as:

.
Definition: Let X be a real linear space; L and R be 

symmetric and non-decreasing mapping from [0,1] × [0,1] 
into [0,1] satisfying L(0,0) = 0, R(1,1) = 1. Then  is 
called a fuzzy norm and  a fuzzy normed 
linear space if  satisfies the following 
axioms, where  for  and 

:
(A)1  if and only if x = 0,
(A)2  for all  and 
(A)3 For all :
(A3L) whenever ,  and ,

then ,
(A3R) whenever ,  and ,

then .
Definition: Let X be a vector space. A fuzzy subset 

N of  is called a fuzzy norm on X if the following 
conditions:

N1) N (x, t) = 0; 
N2) N (x, t) = 1;  iff x = 0,
N3) ;  and c ≠ 0, 

N4) ; for all 
 for all ,

N5) N (x,.) is a non -decreasing function on , and 
.

The pair (X, N) is said to be a fuzzy normed space. 
Definition: Let X and Y be topological spaces. An 

embedding function of X into Y is a function e : X → Y 
which is a homeomorphism when considered as a function 
from X onto e(X). A function e : X → Y is an embedding 
function if and only if it is continuous and one-to-one and 
for every open set V in X there exists an open subset W of Y 
such that e(V) is the intersection of W and Y.

3	 Main results

Theorem: Let (X, N1, *) and (Y, N2, *) be two fuzzy normed 
spaces. Let  , and

. Then (X ×Y, N, *) 
is a fuzzy normed space on X ×Y.

Let  and  be 
two fuzzy normed spaces by the above definition, where 

. Then 
 is a fuzzy normed space where R = max 

and L = 0,

By applying the induction method, we conclude 
that the Cartesian product of fuzzy normed spaces, 

 is also fuzzy normed space. We have 
also same result in Menger probabilistic spaces.

Let  be a classical real normed space. Felbin 
and Samanta have been shown that classical real normed 
space can be considered as fuzzy normed linear spaces 
(Felbin’s type and Samanta’s type). In the following we 
bring an example of a fuzzy normed space which is not 
a real normed space in the classical sense. Therefore the 
spectrum of the category of fuzzy normed linear spaces is 
broader than the category of normed spaces. This is why 
the study of fuzzy normed linear spaces (Felbin’s type and 
Samanta’s type) is of great importance. 

Let Ω be a nonempty open set in some euclidean space. 
It is well known that Ω is the union of countably sets Kn ≠ 
Ø, which can be chosen so that Kn lies in the interior of Kn+1 
(n = 1, 2, 3, ...). The linear space C(Ω), is the vector space 
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of all complex valued continuous functions on Ω, topolo-
gized by the family of non-decreasing classical seminorms 

 In the following results, 
we will prove that C(Ω) is fuzzy normable but it is not so in 
classical analysis, where  is an open subset. 

Theorem: The linear space C(Ω) is fuzzy normable in 
general. For , there exists  such that

 
. Let  define

 and . Then  
is a family of nested bounded closed intervals. We define 
the fuzzy norm map  on C(Ω) as: 

It is easy to see that for ,  is a fuzzy 
real number. Now we show that  is 
a fuzzy normed space. Also by definition 

We have shown that that  is a fuzzy seminorm 
for all  and  is the separating family 
of seminorms on C(Ω). According to the above theorem we 
can define a fuzzy norm on C(Ω) as

.
 Then, (C(Ω), N) is a fuzzy normed space. But C(Ω) 

is not normable in classical analysis, where Ω is an open 
subset of . 

Furthermore, C(Ω) × C(Ω) is also a Fuzzy Banach space 
with the norm where  and  
defined by 

,
and

Definition: [Wu and Ma (1991)] let η be a fuzzy num-
ber in  and we write  and  as 
the function of , then the function

 defined by
 is injective. Now, we prove that 

each element in  can be identified with an element 
 in C(Ω) × C(Ω), where  and

, and this identification is isometric and iso-
morphic.

An important problem in topology is embedding prob-
lem. Theorems asserting the embedding of a space into 
some other space which is more manageable than the origi-
nal space are known as embedding theorems. 

Theorem: (Embedding Theorem). The function 
 be defined by

, if α > 0.5, and ,  
if α < 0.5. Then, the following properties hold true: 

 is injective. 

 
. That is to say,  can 

be embedded into C(Ω) × C(Ω) isometrically and isomorphi-
cally.

Proof: (i): Let f1, f2 be two distinct fuzzy numbers such 
that . Then 

, i.e.
. Then

, and , because the two 
real open intervals are equal which contradicts our assump-
tion and consequently the mapping π is injective. (ii): By 
the definition of fuzzy number and function of π we have: 
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Therefore, we proved that the set of all fuzzy numbers 
can be embedded into a Fuzzy Banach space isometrically 
and isomorphically. Inspired by this specific Banach space, 
a fuzzy optimization problem can be transformed into a mul-
tiobjective optimization problem which can be solved by 
using interactive fuzzy decision making procedure. Under 
this setting, the fuzzy optimization problem is transformed 
into a biobjective programming problem by applying the 
embedding theorem and the optimal solution of the crisp 
optimization problem obtained from the fuzzy optimization 
problem is also an optimal solution of the original fuzzy 
optimization problem under the set of core values of fuzzy 
numbers.

Now, we consider a class of optimization problems 
which have multiple objective functions subject to a set of 
fuzzy relation equations. 

The general form of a Banach application to fuzzy logic 
portfolio selection model can be described as follows:

(1)
A more approximative style to implement a numerical 

solution to a portfolio selection is described as an applica-
tion such as in Eqn. (2) or in Eqn. (3). In the following 
section we present optimization models which illustrate the 
solution to multiobjective portfolio selection models in a 
fuzzy optimization environment. 

                   (2)

4	 FNLP technique for solution of 
Multiobjective Programming 
Problem (MONLP)

Consider the following general Multiobjective Nonlinear 
Programming (MONLP) optimization problem:

(3)

(4)

Step 1: In order to solve the MONLP problem in (12) 
we solve the problem as only one objective while disregard-
ing the other ones. The procedure is successively repeated 
to find the ideal solution.

Step 2: Once all optimal solutions for each objective 
are solved, a pay-off matrix for each single objective can 
be obtained. The obtained pay-off matrix is described as 
follows: 

	              (5)

Optimal solutions for each objective function 
 are given as . From 

this computation we derive the upper and lower bounds of 
each objective function  The upper 
and lower bounds are given in the following says: 

          (6)
Step 3: Fuzzy set: characteristic function  of crisp 

set to each member in X with . The 
assigned values is called a membership function and the 
set , defined by  for  
is called afuzzy set. Membership function, crisp problem 
the membership function  and  are used respectively to 
solve the maximization of objective function f1(x) and mini-
mization of objective function f2(x). We note: 

With w1 and w2 being crisp weights for portfolio returns 
and portfolio variance, then the previous model can be for-
mulated as follows: 

,	             (7)
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where »o« is the composition operator for a function w, and 
a multiplication symbol for our applied exanple in the fol-
lowing section. 

Step 4: Solve crisp nonlinear programming to get 
optimal solution of the MONLP by application of various 
proposed well-known methods.

Crisp Weights:
Crisp relative weights measure the preferences for 

objective goals and reflect their relative importance. The 
positive crisp weights w1 (i = 1, 2, .., m). for the crisp model 
are normalised as . In alternative scenarios we 
propose different weights to reflect investors alternative 
preferences. Hence, a higher weight value gives evidence 
for more importance of the objective goal. In our fuzzy 
non-linear programming models, we tested various related 
scenarios.

Fuzzy Weighted Model:

  ,

                (8)

5	 Numerical Illustration

This section gives an illustrative example to present opti-
mal solutions to MONLP models. We selected six stock 

exchange shares which are traded in the Frankfurt DAX 
stock exchange market. The daily data ranges between 
January 2011 and January 2014. We selected each share 
from different sectors to account for alternative portfolio 
investments. Table 1 shows expected return and variance 
of the alternative shares. The companies are as follows: 
Deutsche Bank (DB), Daimler AG (DM), Henkel AG (HK), 
E.ON. (EON), BASF AG (BASF), Allianz AG (AL).

The covariance matrix for the selected data sample is 
given in Table 2.

In Table 3, the pay-off matrix indicates the optimal 
results of each single objective. 

Weighted Portfolio Selection: 
Table 4 shows the optimal solution values according the 

relative investor preferences.
Finally, we derive the Fuzzy weighted model solution 

in Table 5.

6	 Conclusion

The optimal solution of the crisp optimization problem 
deduced from the fuzzy optimization problem by using 
embedding theorem is an optimal solution of the original 
fuzzy optimization problem under the set of core values of 
fuzzy real numbers. In a portfolio selection problem, the 
expected return, risk, liquidity cannot be predicted accu-
rately. So the investor generally makes his portfolio choice 
according to his knowledge and his economic wisdom. 
Thus, deterministic portfolio selection is not a sensible 
option for the investor. Because of the existence of several 
non-stochastic factors in a stock market, fuzzy portfolio 
selection models have been proposed by model within fuzzy 

Table 1: Expectation and variance for selected stocks (in growth).

DB DM HK EON BASF AL
Expected
Return 

1.00  1.00  1.00  0.99  1.00  1.00 

Variance 0.00061 0.000395683  0.000181948  0.000348582  0.000289541  0.000360242 

Table 2: Covariance matrix. 

  DB  DM  HK  EON  BASF  AL
DB  0.22349517   0.223058336   0.223346256   0.222815933   0.222994258   0.22296937  
DM  0.223058336   0.223449288   0.223118822   0.222894143   0.223114491   0.223061775  
HK  0.223346256   0.223118822   0.223689574   0.222889422   0.223063648   0.223015952  

EON  0.222815933   0.222894143   0.222889422   0.222987418   0.222826304   0.222803293  
BASF  0.222994258   0.223114491   0.223063648   0.222826304   0.223347778   0.222988255  

AL  0.22296937   0.223061775   0.223015952   0.222803293   0.222988255   0.222985648  
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norm. This paper extends the classical Banach spaces into 
fuzzy Banach and Menger probablistic Banach spaces 
model in fuzzy environment. This embedding theorem can 
be used for multiobjective decision making and has success-
fully been applied to optimization problems. We tried out 
various scenarios for portfolio selection which are pointing 
out different investor preferences. In Case 1 (See Table 4), 
the investor treats both objectives equally. In Case 2, the 
investor put more weight on portfolio return. In Case 3, the 
investor prefers to put more weight on the portfolio vari-
ance. We observe that different investor preferences deter-
mine the optimal solution to multiobjective fuzzy portfolio 
selection models according to alternative scenarios. 
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